若實(shí)數(shù)x,y滿足不等式組
x-y≥0
x+y-2≤0
,則2y-x的最大值是( 。
A、-2B、-1C、1D、2
考點(diǎn):簡單線性規(guī)劃
專題:不等式的解法及應(yīng)用
分析:作出不等式組對應(yīng)的平面區(qū)域,設(shè)z=2y-x,利用數(shù)形結(jié)合即可得到結(jié)論.
解答: 解:作出不等式組對應(yīng)的平面區(qū)域如圖:,
設(shè)z=2y-x,則y=
1
2
x+
1
2
z
,平移直線y=
1
2
x+
1
2
z
,當(dāng)直線y=
1
2
x+
1
2
z
經(jīng)過點(diǎn)A時(shí),直線的截距最大,此時(shí)z也最大,
x-y=0
x+y-2=0
,
x=1
y=1
,即A(1,1),
此時(shí)zmax=2×1-1=1,
故選:C.
點(diǎn)評:本題主要考查線性規(guī)劃的應(yīng)用,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖示:已知拋物線C:x2=4y的焦點(diǎn)為F,過點(diǎn)F作直線l交拋物線C于A、B兩點(diǎn),經(jīng)過A、B兩點(diǎn)分別作拋物線C的切線l1、l2,切線l1與l2相交于點(diǎn)M.
(1)當(dāng)點(diǎn)A在第二象限,且到準(zhǔn)線距離為
5
4
時(shí),求|AB|;
(2)證明:AB⊥MF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

拋物線y=-
1
2
(x+2)2-4的開口向
 
,頂點(diǎn)坐標(biāo)
 
,對稱軸
 
,x
 
時(shí),y隨x的增大而增大,x
 
時(shí),y隨x的增大而減。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平面直角坐標(biāo)系內(nèi)的兩個(gè)向量
a
=(1,2),
b
=(m,3m-2),且平面內(nèi)的任一向量
c
都可以唯一表示成
c
=λ
a
-μ
b
(λ,μ為實(shí)數(shù)),則m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

按照如圖的程序框圖執(zhí)行,若輸出的X值為31,則M處的條件為( 。
A、k≤2B、k<3
C、k≤3D、k≤4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}的前n項(xiàng)和為Sn,且a1+a3=
5
2
a2+a4=
5
4
,則
Sn
an
=( 。
A、4n-1
B、4n-1
C、2n-1
D、2n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示的程序框圖,如果輸入m=225,n=135,那么輸出的值為( 。
A、45B、5C、15D、90

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z1=2+i,z2=a-i,z1•z2是實(shí)數(shù),則實(shí)數(shù)a=( 。
A、2B、3C、4D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【理科】已知雙曲線的中心在坐標(biāo)原點(diǎn)O,一條準(zhǔn)線方程為x=
3
2
,且與橢圓
x2
25
+
y2
13
=1
有共同的焦點(diǎn).
(1)求此雙曲線的方程;
(2)設(shè)直線:y=kx+3與雙曲線交于A、B兩點(diǎn),試問:是否存在實(shí)數(shù)k,使得以弦AB為直徑的圓過點(diǎn)O?若存在,求出k的值,若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案