【題目】已知函數(shù)f(x)是定義在R上的偶函數(shù),且在區(qū)間[0,+∞)上單調(diào)遞減,若f(log2a)+f(2log a)≥2f(﹣1),則實數(shù)a的取值范圍是

【答案】[ ,2]
【解析】解:函數(shù)f(x)是定義在R上的偶函數(shù),且在區(qū)間[0,+∞)上單調(diào)遞減,故f(x)在(﹣∞,0]上單調(diào)遞增.
若f(log2a)+f(2log a)≥2f(﹣1),
即f(log2a)+f(log a2)≥2f(﹣1),即f(log2a)+f( a)≥2f(﹣1),
即f(log2a)+f(﹣log2a)≥2f(﹣1),即f(log2a)+f(log2a)≥2f(﹣1),
即f(log2a)≥f(﹣1)=f(1),﹣1≤log2a≤1,∴ ≤a≤2,
所以答案是:
【考點精析】根據(jù)題目的已知條件,利用奇偶性與單調(diào)性的綜合的相關(guān)知識可以得到問題的答案,需要掌握奇函數(shù)在關(guān)于原點對稱的區(qū)間上有相同的單調(diào)性;偶函數(shù)在關(guān)于原點對稱的區(qū)間上有相反的單調(diào)性.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】對于函數(shù)f(x)=ax2+2x﹣2a,若方程f(x)=0有相異的兩根x1 , x2
(1)若a>0,且x1<1<x2 , 求a的取值范圍;
(2)若x1﹣1,x2﹣1同號,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),(其中, 為自然對數(shù)的底數(shù))

(Ⅰ)求函數(shù)的極值;

(Ⅱ)當時,若直線與曲線沒有公共點,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=2x的定義域是[0,3],設g(x)=f(2x)﹣f(x+2).
(1)求g(x)的解析式及定義域;
(2)求函數(shù)g(x)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對任意實數(shù)a,b定義運算“⊙”:a⊙b= 設f(x)=2x+1⊙(1﹣x),若函數(shù)f(x)與函數(shù)g(x)=x2﹣6x在區(qū)間(m,m+1)上均為減函數(shù),且m∈{﹣1,0,1,3},則m的值為(
A.0
B.﹣1或0
C.0或1
D.0或1或3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若橢圓的對稱軸為坐標軸,長軸長與短軸長的和為18,焦距為6,則橢圓的方程為(
A.
B.
C.
D.以上都不對

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】【2017湖南長沙二!磕撤N產(chǎn)品的質(zhì)量以其質(zhì)量指標值衡量,并依據(jù)質(zhì)量指標值劃分等極如下表:

質(zhì)量指標值

等級

三等品

二等品

一等品

從某企業(yè)生產(chǎn)的這種產(chǎn)品中抽取200件,檢測后得到如下的頻率分布直方圖:

1根據(jù)以上抽樣調(diào)查數(shù)據(jù),能否認為該企業(yè)生產(chǎn)的這種產(chǎn)品符合“一、二等品至少要占全部產(chǎn)品90%”的規(guī)定?

2在樣本中,按產(chǎn)品等極用分層抽樣的方法抽取8件,再從這8件產(chǎn)品中隨機抽取4件,求抽取的4件產(chǎn)品中,一、二、三等品都有的概率;

3該企業(yè)為提高產(chǎn)品質(zhì)量,開展了“質(zhì)量提升月”活動,活動后再抽樣檢測,產(chǎn)品質(zhì)量指標值近似滿足,則“質(zhì)量提升月”活動后的質(zhì)量指標值的均值比活動前大約提升了多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,程序框圖的輸出結(jié)果為﹣18,那么判斷框①表示的“條件”應該是(

A.i>10?
B.i>9?
C.i>8?
D.i>7?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】【2017南通二模19】已知函數(shù),,其中e為自然對數(shù)的底數(shù).

(1)求函數(shù)在x1處的切線方程;

(2)若存在,使得成立,其中為常數(shù),

求證:;

(3)若對任意的,不等式恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案