【題目】如圖所示的幾何體中,為直三棱柱,四邊形為平行四邊形,, .
(1)若,證明:四點共面,且;
(2)若,二面角的余弦值為,求直線與平面所成角.
【答案】(1)證明見解析;(2).
【解析】
(1)根據(jù)三棱柱的性質(zhì)及平行四邊形性質(zhì),可證明四邊形為平行四邊形,則四點共面;由和可得四邊形為正方形, 連接交于.在中由余弦定理可得,進(jìn)而可知,則可證明平面,從而.
(2)結(jié)合(1),建立空間直角坐標(biāo)系,寫出各個點的坐標(biāo),用表示出平面和平面的法向量,利用二面角的余弦值為求得的值.由的值可判斷出平面,所以在正方形中即可求得直線與平面所成角的大小.
(1)證明:因為為直三棱柱,
所以∥,且,
又因為四邊形為平行四邊形,
所以∥,且,
所以∥,且,
所以四邊形為平行四邊形,
所以,,,四點共面;
因為,又平面,
所以,所以四邊形為正方形,
連接交于,如下圖所示:
所以,在中,,
在中由余弦定理得,
所以,所以,
所以,又,
所以平面,所以,
又因為,所以平面;
所以
(2)由(1)知,可建立如下圖所示的空間直角直角坐標(biāo)系:
則,,
,,,
,
設(shè)平面的法向量為,
由即,令,可得
設(shè)平面的法向量為
由得令,可得,
由
得,因為,所以
此時,,所以四邊形為正方形,
因為,,
又因為,所以平面,
所以與平面所成角為
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x-lnx,g(x)=x2-ax.
(1)求函數(shù)f(x)在區(qū)間[t,t+1](t>0)上的最小值m(t);
(2)令h(x)=g(x)-f(x),A(x1,h(x1)),B(x2,h(x2))(x1≠x2)是函數(shù)h(x)圖像上任意兩點,且滿足>1,求實數(shù)a的取值范圍;
(3)若x∈(0,1],使f(x)≥成立,求實數(shù)a的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,五面體中,,平面平面,平面平面.,,點P是線段上靠近A的三等分點.
(Ⅰ)求證:平面;
(Ⅱ)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校為了解高三男生的體能達(dá)標(biāo)情況,抽調(diào)了120名男生進(jìn)行立定跳遠(yuǎn)測試,根據(jù)統(tǒng)計數(shù)據(jù)得到如下的頻率分布直方圖.若立定跳遠(yuǎn)成績落在區(qū)間的左側(cè),則認(rèn)為該學(xué)生屬“體能不達(dá)標(biāo)的學(xué)生,其中分別為樣本平均數(shù)和樣本標(biāo)準(zhǔn)差,計算可得(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表).
(1)若該校高三某男生的跳遠(yuǎn)距離為,試判斷該男生是否屬于“體能不達(dá)標(biāo)”的學(xué)生?
(2)該校利用分層抽樣的方法從樣本區(qū)間中共抽出5人,再從中選出兩人進(jìn)行某體能訓(xùn)練,求選出的兩人中恰有一人跳遠(yuǎn)距離在的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】是自然對數(shù)的底數(shù),,已知函數(shù),.
(1)若函數(shù)有零點,求實數(shù)的取值范圍;
(2)對于,證明:當(dāng)時,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知南北回歸線的緯度為,設(shè)地球表面某地正午太陽高度角為,為此時太陽直射緯度,為該地的緯度值,那么這三個量之間的關(guān)系是.當(dāng)?shù)叵陌肽?/span>取正值,冬半年取負(fù)值,如果在北半球某地(緯度為)的一幢高為的樓房北面蓋一新樓,要使新樓一層正午的太陽全年不被前面的樓房遮擋,兩樓的距離應(yīng)不小于______(結(jié)果用含有和的式子表示).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】由國家統(tǒng)計局提供的數(shù)據(jù)可知,2012年至2018年中國居民人均可支配收入(單位:萬元)的數(shù)據(jù)如下表:
年份 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
年份代號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
人均可支配收入 | 1.65 | 1.83 | 2.01 | 2.19 | 2.38 | 2.59 | 2.82 |
(1)求關(guān)于的線性回歸方程(系數(shù)精確到0.01);
(2)利用(1)中的回歸方程,分析2012年至2018年中國居民人均可支配收入的變化情況,并預(yù)測2019年中國居民人均可支配收入.
附注:參考數(shù)據(jù):,.
參考公式:回歸直線方程的斜率和截距的最小二乘估計公式分別為: ,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正方體,過對角線作平面交棱于點E,交棱于點F,則:
①平面分正方體所得兩部分的體積相等;
②四邊形一定是平行四邊形;
③平面與平面不可能垂直;
④四邊形的面積有最大值.
其中所有正確結(jié)論的序號為( )
A.①④B.②③C.①②④D.①②③④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com