已知雙曲線的兩條漸進(jìn)線過(guò)坐標(biāo)原點(diǎn),且與以點(diǎn)為圓心,為半徑的圓相且,雙曲線的一個(gè)頂點(diǎn)與點(diǎn)關(guān)于直線對(duì)稱,設(shè)直線過(guò)點(diǎn),斜率為

(Ⅰ)求雙曲線的方程;

(Ⅱ)當(dāng)時(shí),若雙曲線的上支上有且只有一個(gè)點(diǎn)到直線的距離為,求斜率的值和相應(yīng)的點(diǎn)的坐標(biāo)。

(Ⅰ)設(shè)雙曲線的漸進(jìn)線方程是與圓相切,漸進(jìn)線方程為,又雙曲線的一個(gè)頂點(diǎn)關(guān)于的對(duì)稱點(diǎn)為雙曲線的方程為。

(Ⅱ)直線  設(shè)在上方與平行且相距的直線的直線方程是的方程是代入,解得

(Ⅰ)當(dāng)時(shí)方程只有一組解,符合題意。此時(shí)

(Ⅱ)當(dāng)時(shí),由有且只有一個(gè)公共點(diǎn),

綜上所述:


解析:

同答案

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

雙曲線的兩條漸進(jìn)線方程分別為x-
3
y=0和x+
3
y=0,雙曲線上的點(diǎn)滿足不等式x2-3y2<0,已知雙曲線的焦距為4,則雙曲線的準(zhǔn)線方程為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年廣東省高三2月月考理科數(shù)學(xué) 題型:解答題

(本題滿分14分)如圖,已知為橢圓的右焦點(diǎn),直線過(guò)點(diǎn)且與雙曲線的兩條漸進(jìn)線分別交于點(diǎn),與橢圓交于點(diǎn).

 

 

(I)若,雙曲線的焦距為4。求橢圓方程。

(II)若為坐標(biāo)原點(diǎn)),,求橢圓的離心率

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年河北省唐山一中高考數(shù)學(xué)仿真試卷3(文科)(解析版) 題型:選擇題

雙曲線的兩條漸進(jìn)線方程分別為x-y=0和x+y=0,雙曲線上的點(diǎn)滿足不等式x2-3y2<0,已知雙曲線的焦距為4,則雙曲線的準(zhǔn)線方程為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2007年江蘇省南京市高考數(shù)學(xué)二模試卷(解析版) 題型:解答題

已知F為橢圓(a>b>0)的右焦點(diǎn),直線l過(guò)點(diǎn)F且與雙曲線的兩條漸進(jìn)線l1,l2分別交于點(diǎn)M,N,與橢圓交于點(diǎn)A,B.
(Ⅰ)若,雙曲線的焦距為4.求橢圓方程.
(Ⅱ)若(O為坐標(biāo)原點(diǎn)),,求橢圓的離心率e.

查看答案和解析>>

同步練習(xí)冊(cè)答案