已知圓O:x2+y2=1和圓C:x2+y2-6x+4y+11=0,動點(diǎn)P到這兩圓的切線長相等,求動點(diǎn)P的軌跡方程.
考點(diǎn):軌跡方程
專題:圓錐曲線的定義、性質(zhì)與方程
分析:首先由圓的一般方程求出圓心,半徑;再由勾股定理分別表示出切線長|PA|=|PB|得到方程,整理即可.
解答: 解:圓O:x2+y2=1:圓心O(0,0),半徑r=1;
圓C:x2+y2-6x+4y+11=0,圓心C(3,-2),半徑r'=
2

設(shè)P(x,y),由切線長相等|PA|=|PB|,
得x2+y2-1=x2+y2-6x+4y+11,
即動點(diǎn)P的軌跡方程是3x-2y-6=0.
點(diǎn)評:本題考查圓一般方程的圓心、半徑的表示及勾股定理,同時考查方程的思想.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖所示的程序框圖,如果輸入a=2,b=2,那么輸出的a值為( 。
A、14B、15C、16D、17

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x∈R,則“x>1”是“x2>x”的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合M={-1,0,1},N={-1,0},則M∩N=(  )
A、{-1,0,1}
B、{-1,0}
C、{-1,1}
D、{1,0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線y=x+m被橢圓4x2+y2=1截得的弦長為
2
2
5
,則m的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b∈R,則“a>b”是“
a+b
2
ab
”成立的(  )
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知三棱錐S-ABC中,SA=BC=2,AB=AC=SB=SC=
3
,則二面角A-BC-S的大小為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知過拋物線x2=4y的焦點(diǎn)F的直線l與拋物線相交于A、B兩點(diǎn).
(1)設(shè)拋物線在A、B處的切線的交點(diǎn)為M,若點(diǎn)M的橫坐標(biāo)為2,求△ABM的外接圓方程.
(2)若直線l與橢圓
3y2
4
+
3x2
2
=1的交點(diǎn)為C,D,問是否存在這樣的直線l使|AF|•|CF|=|BF|•|DF|,若存在,求出l的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義運(yùn)算:
.
a 1a 2
a 3a 4
.
=a1a4-a2a3,若將函數(shù)f(x)=
.
-sinxcosx
1
3
.
的圖象向左平移m(m>0)個單位后,所得圖象對應(yīng)的函數(shù)為偶函數(shù),則m的最小值是(  )
A、
π
6
B、
π
3
C、
3
D、
5
6
π

查看答案和解析>>

同步練習(xí)冊答案