若一組數(shù)據(jù)x1,x2,x3,…,x10的方差為2,則3(x1-2),3(x2-2),…,3(x10-2)的方差為
 
考點:極差、方差與標(biāo)準(zhǔn)差
專題:計算題,概率與統(tǒng)計
分析:根據(jù)方差的計算公式可得D(3x-6)=9×Dx,由此計算可得答案.
解答: 解:由題意Dx=
1
10
×
10
i=1
(xi-
.
x
)
2
=2,
則D(3x-6)=
1
10
×
10
i=1
(3xi-6-3
.
x
+6)
2
=32×Dx=18.
故答案為:18.
點評:本題考查了方差的計算公式及性質(zhì),根據(jù)方差的計算公式知:當(dāng)數(shù)據(jù)都加上一個數(shù)(或減去一個數(shù))時,平均數(shù)也加或減這個數(shù),方差不變,即數(shù)據(jù)的波動情況不變;當(dāng)數(shù)據(jù)都乘以一個數(shù)(或除以一個數(shù))時,平均數(shù)也乘以或除以這個數(shù),方差變?yōu)檫@個數(shù)的平方倍.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
kx+k ,x≤0
lnx,x>0
(其中k≥0)
,若函數(shù)y=f[f(x)]+1有4個零點,則實數(shù)k的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓心為C(-1,2),且與x軸相切的圓的標(biāo)準(zhǔn)方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若an=2n2+λn+3(其中λ為實常數(shù)),n∈N*,且數(shù)列{an}為單調(diào)遞增數(shù)列,則實數(shù)λ的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=6x-4,(x=1,2,3,4)的值域為集合A,函數(shù)g(x)=2x-1,(x=1,2,3,4)的值域為集合B,任意a∈A∪B,則a∈A∩B的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不論m取什么實數(shù),直線(2m-1)x+(m+3)y-(m-11)=0都經(jīng)過一個定點,則這個定點為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=(
1
3
 -x2-4x+3的單調(diào)遞減區(qū)間為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1與雙曲線
y2
a2
-
x2
b2
=1,設(shè)連接它們的頂點構(gòu)成的四邊形的面積為S1,連接它們的焦點構(gòu)成的四邊形的面積為S2,則
S1
S2
的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過直線2x+y+4=0和圓x2+y2+2x-4y+1=0的交點,且面積最小的圓方程為( 。
A、(x+
13
5
2+(y+
6
5
2=
4
5
B、(x-
13
5
2+(y-
6
5
2=
4
5
C、(x-
13
5
2+(y+
6
5
2=
4
5
D、(x+
13
5
2+(y-
6
5
2=
4
5

查看答案和解析>>

同步練習(xí)冊答案