如圖,平面ADE⊥平面ABCD,△ADE是邊長為a的等邊三角形,ABCD是矩形,F(xiàn)是AB的中點,并且EC與平面ABCD所成的角為.
(1)求證EA⊥CD;(2)求二面角E-FC-D的大。(3)求D點到平面EFC的距離.
證明:(1)∵ABCD是矩形, ∴CD⊥AD. 又平面ADE⊥平面ABCD,交線為AD, ∴CD⊥平面ADE 而EA平面ADE,于是EA⊥CD. (2)在平面ADE內(nèi)作EG⊥AD于G.由于平面ADE⊥平面ABCD,且AD為交線,故EG⊥平面ABCD.連結(jié)GF,GC.因此∠ECG為EC和平面ABCD所成的角,故∠ECG=.由已知可求得EG=a,GC=a,GD=a,CD=a,F(xiàn)G=a,EF=FC=a,EC=a.于是有,即△EFC為等腰直角三角形.故GF⊥FC,故GF⊥FC.所以∠EFG為二面角E-FC-D的平面角,且∠EFG=,即二面角E-FC-D為. (3)由(2)連結(jié)DF,D點到平面EFC的距離即三棱錐D-EFC的高h.因為,故·GE=h.由此可求得h=a,即點D到平面EFC的距離a. |
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年北京市高三起點考試理科數(shù)學(xué)卷 題型:解答題
(本小題滿分12分)
如右圖,正方形ABCD所在平面與圓O所在平面相交于CD,線段CD為圓O的弦,AE垂直于圓O所在平面,垂足E是圓O上異于C、D的點,AE=3,圓O的直徑為9。
(1)求證:平面ABCD平在ADE;
(2)求二面角D—BC—E的平面角的正切值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省南通市海門中學(xué)高三(上)開學(xué)檢測數(shù)學(xué)試卷(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省南通市海門中學(xué)高三(上)開學(xué)檢測數(shù)學(xué)試卷(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com