D
解析:由正弦定理得.又由橢圓定義得AB+BC=2×5=10.AC=8. 所以
科目:高中數(shù)學 來源:2012年全國普通高等學校招生統(tǒng)一考試理科數(shù)學(天津卷解析版) 題型:解答題
如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.
(Ⅰ)證明PC⊥AD;
(Ⅱ)求二面角A-PC-D的正弦值;
(Ⅲ)設E為棱PA上的點,滿足異面直線BE與CD所成的角為30°,求AE的長.
【解析】解法一:如圖,以點A為原點建立空間直角坐標系,依題意得A(0,0,0),D(2,0,0),C(0,1,0), ,P(0,0,2).
(1)證明:易得,于是,所以
(2) ,設平面PCD的法向量,
則,即.不防設,可得.可取平面PAC的法向量于是從而.
所以二面角A-PC-D的正弦值為.
(3)設點E的坐標為(0,0,h),其中,由此得.
由,故
所以,,解得,即.
解法二:(1)證明:由,可得,又由,,故.又,所以.
(2)如圖,作于點H,連接DH.由,,可得.
因此,從而為二面角A-PC-D的平面角.在中,,由此得由(1)知,故在中,
因此所以二面角的正弦值為.
(3)如圖,因為,故過點B作CD的平行線必與線段AD相交,設交點為F,連接BE,EF. 故或其補角為異面直線BE與CD所成的角.由于BF∥CD,故.在中,故
在中,由,,
可得.由余弦定理,,
所以.
查看答案和解析>>
科目:高中數(shù)學 來源:2014屆山東省高一第二學期期中考試數(shù)學試卷(解析版) 題型:解答題
在△ABC中,已知B=45°,D是BC邊上的一點,AD=10,AC=14,DC=6,
求⑴ ∠ADB的大。虎 BD的長.
【解析】本試題主要考查了三角形的余弦定理和正弦定理的運用
第一問中,∵cos∠ADC=
==-∴ cos∠ADB=cos(180°-∠ADC)=-cos∠ADC=∴ cos∠ADB=60°
第二問中,結合正弦定理∵∠DAB=180°-∠ADB-∠B=75°
由= 得BD==5(+1)
解:⑴ ∵cos∠ADC=
==-,……………………………3分
∴ cos∠ADB=cos(180°-∠ADC)=-cos∠ADC=, ……………5分
∴ cos∠ADB=60° ……………………………6分
⑵ ∵∠DAB=180°-∠ADB-∠B=75° ……………………………7分
由= ……………………………9分
得BD==5(+1)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com