16.已知函數(shù)f(x)=lgx+$\frac{3}{2}$x-9在區(qū)間(n,n+1)(n∈Z)上存在零點(diǎn),則n=5.

分析 判斷的單調(diào)性以及函數(shù)的連續(xù)性,然后利用零點(diǎn)判定定理求解即可.

解答 解:函數(shù)f(x)=lgx+$\frac{3}{2}$x-9是連續(xù)的單調(diào)增函數(shù),
f(5)=lg5+$\frac{15}{2}-9$<0,
f(6)=lg6+9-9>0,
因?yàn)閒(5)f(6)<0,
所以函數(shù)的零點(diǎn)在(5,6)之間,
所以n=5.
故答案為:5.

點(diǎn)評(píng) 本題考查函數(shù)的零點(diǎn)判定定理的應(yīng)用,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.從編號(hào)為1,2,…,79,80的80件產(chǎn)品中,采用系統(tǒng)抽樣的方法抽取容量為5的樣本,若編號(hào)為10的產(chǎn)品在樣本中,則該樣本中產(chǎn)品的最大編號(hào)為( 。
A.72B.73C.74D.75

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c.已知C=$\frac{2π}{3}$,c=5,a=$\sqrt{5}$bsinA.
(1)求b的值;
(2)求tan(B+$\frac{π}{4}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知數(shù)列{an}的首項(xiàng)為1,Sn為數(shù)列{an}的前n項(xiàng)和,Sn+1=qSn+1,其中q>0,n∈N*
(1)若2a2,a3,a2+2成等差數(shù)列,求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{bn}滿足bn=$\sqrt{1+{a_n}^2}$,且b2=$\frac{5}{3}$,證明:b1+b2+…+bn>$\frac{{{4^n}-{3^n}}}{{{3^{n-1}}}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.函數(shù)f(x)=$\sqrt{x+1}+\frac{1}{x-2}$的定義域?yàn)閇-1,2)∪(2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的部分圖象如圖所示
(1)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(2)求函數(shù)f(x)在區(qū)間$[{\frac{π}{6},\frac{π}{2}}]$上的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知sinα=$\frac{3}{5},α∈({\frac{π}{2},π})$.
(1)求$sin({\frac{π}{3}+α})$的值;
(2)求$cos({\frac{π}{4}-2α})$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.某高級(jí)中學(xué)共有1200名學(xué)生,現(xiàn)用分層抽樣的方法從該校學(xué)生中抽取一個(gè)容量為60的樣本,其中高一年級(jí)抽30人,高三年級(jí)抽15人.則該校高二年級(jí)學(xué)生人數(shù)為300.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.在銳角△ABC中,角A、B、C的對(duì)邊分別為a、b、c,若a2=b2+bc,則$\frac{a}$的取值范圍是($\sqrt{2}$,$\sqrt{3}$).

查看答案和解析>>

同步練習(xí)冊(cè)答案