【題目】如圖,,,,,分別為,邊的中點(diǎn),以為折痕把折起,使點(diǎn)到達(dá)點(diǎn)的位置,且..
(Ⅰ)證明:平面;
(Ⅱ)設(shè)為線段上動(dòng)點(diǎn),求直線與平面所成角的正弦值的最大值.
【答案】(Ⅰ)見解析;
(Ⅱ).
【解析】
(Ⅰ)由題,易證得,即可證得結(jié)論;
(Ⅱ)取BE的中點(diǎn)O,連接PO,易證得PO,然后以O(shè)為原點(diǎn),建立直角坐標(biāo)系,利用空間向量求得與平面所成角的正弦值,求得其最大值即可.
(Ⅰ)E,F分別為AB ,AC邊的中點(diǎn),所以
因?yàn)?/span>
又因?yàn)?/span> ,所以平面.
(Ⅱ)取BE的中點(diǎn)O,連接PO,
由(1)知平面,EF平面BCFE,,
所以平面PBE平面BCFE
因?yàn)镻B=BE=PE,所以PO,
又因?yàn)镻O平面PBE,平面PBE平面BCFE=BE
所以PO .
過(guò)O作OM//BC交CF于M,分別以O(shè)B,OM,OP所在直線為
x,y,z軸建立空間直角坐標(biāo)系,如圖所示.
N為線段PF上一動(dòng)點(diǎn)設(shè),由,
得
設(shè)平面PCF的法向量為
則 即取
設(shè)直線BN與平面PCF所成角
直線BN與平面PCF所成角的正弦值的最大值為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某小學(xué)舉辦“父母養(yǎng)育我,我報(bào)父母恩”的活動(dòng),對(duì)六個(gè)年級(jí)(一年級(jí)到六年級(jí)的年級(jí)代碼分別為1,2…,6)的學(xué)生給父母洗腳的百分比y%進(jìn)行了調(diào)查統(tǒng)計(jì),繪制得到下面的散點(diǎn)圖.
(1)由散點(diǎn)圖看出,可用線性回歸模型擬合y與x的關(guān)系,請(qǐng)用相關(guān)系數(shù)加以說(shuō)明;
(2)建立y關(guān)于x的回歸方程,并據(jù)此預(yù)計(jì)該校學(xué)生升入中學(xué)的第一年(年級(jí)代碼為7)給父母洗腳的百分比.
附注:參考數(shù)據(jù):
參考公式:相關(guān)系數(shù),若r>0.95,則y與x的線性相關(guān)程度相當(dāng)高,可用線性回歸模型擬合y與x的關(guān)系.回歸方程中斜率與截距的最小二乘估計(jì)公式分別為= ,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系.已知曲線的極坐標(biāo)方程為,為曲線上的動(dòng)點(diǎn),與軸、軸的正半軸分別交于,兩點(diǎn).
(1)求線段中點(diǎn)的軌跡的參數(shù)方程;
(2)若是(1)中點(diǎn)的軌跡上的動(dòng)點(diǎn),求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:,其中,點(diǎn)是橢圓的右頂點(diǎn),射線:與橢圓的交點(diǎn)為.
(1)求點(diǎn)的坐標(biāo);
(2)設(shè)橢圓的長(zhǎng)半軸、短半軸的長(zhǎng)分別為、,當(dāng)的值在區(qū)間中變化時(shí),求的取值范圍;
(3)在(2)的條件下,以為焦點(diǎn),為頂點(diǎn)且開口方向向左的拋物線過(guò)點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公交公司為了方便市民出行,科學(xué)規(guī)劃車輛投放,在一個(gè)人員密集流動(dòng)地段增設(shè)一個(gè)起點(diǎn)站,為了研究車輛發(fā)車間隔時(shí)間x與乘客等候人數(shù)y之間的關(guān)系,經(jīng)過(guò)調(diào)查得到如下數(shù)據(jù):
間隔時(shí)間x/分 | 10 | 11 | 12 | 13 | 14 | 15 |
等候人數(shù)y/人 | 23 | 25 | 26 | 29 | 28 | 31 |
調(diào)查小組先從這6組數(shù)據(jù)中選取4組數(shù)據(jù)求線性回歸方程,再用剩下的2組數(shù)據(jù)進(jìn)行檢驗(yàn).檢驗(yàn)方法如下:先用求得的線性回歸方程計(jì)算間隔時(shí)間對(duì)應(yīng)的等候人數(shù),再求與實(shí)際等候人數(shù)y的差,若差值的絕對(duì)值都不超過(guò)1,則稱所求方程是“恰當(dāng)回歸方程”.
(1)從這6組數(shù)據(jù)中隨機(jī)選取4組數(shù)據(jù),求剩下的2組數(shù)據(jù)的間隔時(shí)間相鄰的概率;
(2)若選取的是中間4組數(shù)據(jù),求y關(guān)于x的線性回歸方程,并判斷此方程是否是“恰當(dāng)回歸方程”.
附:對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)分別為:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司航拍宣傳畫報(bào),為了凸顯公司文化,選擇如圖所示的邊長(zhǎng)為2百米的正三角形空地進(jìn)行布置拍攝場(chǎng)景,在的中點(diǎn)處安裝中央聚光燈,為邊上得可以自由滑動(dòng)的動(dòng)點(diǎn),其中設(shè)置為普通色彩燈帶(燈帶長(zhǎng)度可以自由伸縮),線段部分需要材料 (單位:百米)裝飾用以增加拍攝效果因材料價(jià)格昂貴,所以公司要求采購(gòu)材料使用不造成浪費(fèi).
(1)當(dāng),與垂直時(shí),采購(gòu)部需要采購(gòu)多少百米材料?
(2)為了增加拍攝動(dòng)態(tài)效果需要,現(xiàn)要求點(diǎn)在邊上滑動(dòng),且,則購(gòu)買材料的范圍是多少才能滿足動(dòng)態(tài)效果需要又不會(huì)造成浪費(fèi).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐的底面是菱形,底面,分別是的中點(diǎn),,,.
(I)證明:;
(II)求直線與平面所成角的正弦值;
(III)在邊上是否存在點(diǎn),使與所成角的余弦值為,若存在,確定點(diǎn)位置;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知空間幾何體中,與均為邊長(zhǎng)為的等邊三角形,為腰長(zhǎng)為的等腰三角形,平面平面,平面平面.
(1)試在平面內(nèi)作一條直線,使直線上任意一點(diǎn)與的連線均與平面平行,并給出詳細(xì)證明
(2)求點(diǎn)到平面的距離
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com