A. | $\frac{\sqrt{3}}{3}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | 1 | D. | $\sqrt{3}$ |
分析 先求出A、F的坐標(biāo),設(shè)出P的坐標(biāo),求出的坐標(biāo),由題意可得方程組,解方程組求得點P的坐標(biāo).然后求解斜率.
解答 解:由已知橢圓$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{5}$=1的左焦點為F(-2,0),右頂點為A(3,0),設(shè)點P(x,y),則$\overrightarrow{PA}$=(3-x,-y),$\overrightarrow{FP}$=(x+2,y).
由已知FP⊥PA,可得$\left\{\begin{array}{l}{(3-x)(x+2)+y(-y)=0}\\{\frac{{x}^{2}}{9}+\frac{{y}^{2}}{5}=1}\end{array}\right.$,4x2-9x-9=0,解得x=3,或x=-$\frac{3}{4}$.
由題意x=-$\frac{3}{4}$,于是y=±$\frac{5\sqrt{3}}{4}$.∴點P的坐標(biāo)是(-$\frac{3}{4}$,±$\frac{5\sqrt{3}}{4}$).
直線PF的斜率:$\frac{±\frac{5\sqrt{3}}{4}}{-\frac{3}{4}+2}$=$±\sqrt{3}$.
故選:D.
點評 本題考查橢圓的簡單性質(zhì)和點到直線的距離公式,兩個向量垂直的性質(zhì),求出點P的坐標(biāo),是解題的難點.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 10 | B. | 7 | C. | 4 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com