分析 (1)當(dāng)x≤0時(shí)得到f(x)=0而f(x)=2,所以無解;當(dāng)x>0時(shí)解出f(x)=2求出x即可;
(2)由 t∈[1,2]時(shí),etf(2t)+mf(t)≥0恒成立得到,得到f(t)=et-e-t,代入得到m的范圍即可.
解答 解:(1)當(dāng)x≤0時(shí)f(x)=0,
當(dāng)x>0時(shí),f(x)=ex-e-x,
由條件可得,ex-e-x=2,
即e2x-2×ex-1=0,解得ex=1±$\sqrt{2}$,∵ex>0,
∴ex=1+$\sqrt{2}$,
∴x=ln(1+$\sqrt{2}$).
(2)當(dāng)t∈[1,2]時(shí),etf(2t)+mf(t)≥0,
即m(e2t-1)≥-(e4t-1).∵e2t-1>0,∴m≥-(e2t+1).
∵t∈[1,2],∴-(1+e2t)∈[-1-e4,-1+e],
故m的取值范圍是[e-1,+∞).
點(diǎn)評 本題主要考查了函數(shù)恒成立問題.屬于基礎(chǔ)題.恒成立問題多需要轉(zhuǎn)化,因?yàn)橹挥型ㄟ^轉(zhuǎn)化才能使恒成立問題等到簡化;轉(zhuǎn)化過程中往往包含著多種數(shù)學(xué)思想的綜合運(yùn)用,同時(shí)轉(zhuǎn)化過程更提出了等價(jià)的意識和要求.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ∠A′DB≤θ,∠A′CB≤θ | B. | ∠A′DB≤θ,∠A′CB≥θ | C. | ∠A′DB≥θ,∠A′CB≤θ | D. | ∠A′DB≥θ,∠A′CB≥θ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3,3 | B. | 3,-1 | C. | -1,3 | D. | -1,-1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
$\overrightarrow x$ | $\overrightarrow y$ | $\overrightarrow w$ | $\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}$ | $\sum_{i=1}^n{{{({w_i}-\overline w)}^2}}$ | $\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}$ | $\sum_{i=1}^n{({w_i}-\overline w)({y_i}-\overline y)}$ |
46.6 | 56.3 | 6.8 | 289.8 | 1.6 | 1469 | 108.8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
x | 2 | 4 | 5 | 6 | 8 |
y | 30 | 40 | 60 | 50 | 70 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
上機(jī)天數(shù)x | 10 | 20 | 30 | 40 | 50 |
產(chǎn)品個(gè)數(shù)y/天 | 62 | 75 | 81 | 89 |
A. | 67 | B. | 68 | C. | 68.3 | D. | 71 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|0≤x<1} | B. | {x|0<x<1} | C. | {x|0≤x≤1} | D. | {x|-1<x<1} |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com