在三棱柱中,底面是正三角形,側棱底面,點是側面 的中心,若,則直線與平面所成角的大小為(   )

A. B. C. D.

A

解析試題分析:由題意畫出圖形,取BC的中點D,連接AD與ED,因為三棱柱ABC-A1B1C1中,底面是正三角形,側棱AA1⊥底面ABC,所以平面BCC1B1⊥平面ABC,點E是側面BB1CC1的中心,所以ED⊥BC,AD⊥BC,所以AD⊥平面EBC,∠AED就是直線AE與平面BB1CC1所成角,∵AA1=3AB,∴,所以∠AED=30°,即直線與平面所成角。
考點:直線與平面所成的角;正棱柱的結構特征。
點評:本題考查直線與平面垂直的判斷方法,直線與平面所成角的求法,考查計算能力.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:單選題

如圖,面,的中點,為面內的動點,且到直線的距離為,則的最大值(   )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

m、n是兩條不同的直線,α、β是兩個不同的平面,則下列命題中正確的是

A.若mn,mα,則nαB.若αβ,mα,則mβ
C.若αβ,mβ,則mαD.若mn,mα nβ,則α⊥β

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

是兩不同直線,是兩不同平面,則下列命題錯誤的是

A.若,,則
B.若,,,則
C.若,
D.若,,,則

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

將正方形沿對角線折成直二面角,有如下四個結論:
;     ②△是等邊三角形;
與平面所成的角為60°; ④所成的角為60°.
其中錯誤的結論是(   )

A.① B.② C.③ D.④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

若α、β是兩個不同的平面,m、n是兩條不同直線,則下列命題不正確的是

A.α∥β,m⊥α,則m⊥β
B.m∥n,m⊥α,則n⊥α
C. n∥α,n⊥β,則α⊥β
D.αβ=m,n與α、β所成的角相等,則m⊥n

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

、b是兩條不同的直線,是兩個不同的平面,則下列四個命題中正確的是(    )

A.若⊥b,,則b∥ B.若,,則 
C.若,,則  D.若⊥b,,b⊥,則 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

是兩條不同的直線,是三個不同的平面.給出下列四個命題:
①若, ,則
②若,則;
③若,則;
④若,則
其中正確命題的序號是(  )

A.①和② B.②和③ C.③和④ D.①和④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

設l,m,n為三條不同的直線,α、β為兩個不同的平面,下列命題中正確的個數(shù)是(   )
① 若l⊥α,m∥β,α⊥β則l⊥m ② 若則l⊥α
③ 若l∥m,m∥n,l⊥α,則n⊥α ④ 若l∥m,m⊥α,n⊥β,α∥β,則l∥n

A.1B.2 C.3D.4

查看答案和解析>>

同步練習冊答案