10.第24屆國(guó)際數(shù)學(xué)家大會(huì)會(huì)標(biāo)是以我國(guó)古代數(shù)學(xué)家趙爽的弦圖為基礎(chǔ)進(jìn)行設(shè)計(jì)的.如下圖會(huì)標(biāo)是由四個(gè)全等的直角三角形與一個(gè)小正方形拼成的一個(gè)大正方形,如果小正方形的面積為1,大正方形的面積為25,直角三角形中較大的銳角為θ,那么$sin({θ+\frac{π}{3}})$=$\frac{{4+3\sqrt{3}}}{10}$.

分析 設(shè)直角三角形的邊長(zhǎng)為a,a+1,a2+(a+1)2=25,a>0.解出利用倍角公式即可得出.

解答 解:設(shè)直角三角形的邊長(zhǎng)為a,a+1,
則a2+(a+1)2=25,a>0.
解得a=3.
∴sinθ=$\frac{3}{5}$,cosθ=$\frac{4}{5}$.
∴$sin({θ+\frac{π}{3}})$=$\frac{\sqrt{3}}{2}×\frac{3}{5}+\frac{1}{2}×\frac{4}{5}$=$\frac{{4+3\sqrt{3}}}{10}$.
故答案為$\frac{{4+3\sqrt{3}}}{10}$.

點(diǎn)評(píng) 本題考查了勾股定理、倍角公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.解關(guān)于x的不等式:$\frac{ax}{x-1}≤1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.若復(fù)數(shù)z=$\frac{3+4i}{1-i}$,則復(fù)數(shù)z的模|z|=(  )
A.$\frac{5}{2}$B.$\frac{5\sqrt{2}}{2}$C.$\frac{\sqrt{10}}{2}$D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.若loga(3a-1)>1(a>0,且a≠1),則實(shí)數(shù)a的取值范圍為( 。
A.$({\frac{1}{3},\frac{1}{2}})$B.$({\frac{1}{3},\frac{1}{2}})∪({1,+∞})$C.(1,+∞)D.$({\frac{1}{3},1})∪({1,+∞})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.定義在R上的奇函數(shù)f(x)滿足x>0時(shí),f(x)=x-$\sqrt{x}$+1.
(1)求函數(shù)f(x)的解析式; 
(2)求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.如圖所示,在四棱錐S-ABCD中,AD∥BC,AD⊥AB,CD⊥平面SAD,SA=AD=2,AB=1,SB=$\sqrt{5}$,SD=2$\sqrt{2}$,M,N分別為AB,SC的中點(diǎn).
(1)證明:AB∥CD;
(2)證明:平面SMC⊥平面SCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.下列說(shuō)法正確的是( 。
A.“x<1”是“l(fā)og2(x+1)<1”的充分不必要條件
B.命題“?x>0,2x>1”的否定是“$?{x_0}≤0,{2^{x_0}}≤1$”
C.命題“若a≤b,則ac2≤bc2”的逆命題為真命題
D.命題“若a+b≠5,則a≠2或b≠3”為真命題.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知函數(shù)f(x)=(2-a)lnx+$\frac{1}{x}$+2ax(a≤0).
(Ⅰ)當(dāng)a=0時(shí),求f(x)的極值;
(Ⅱ)當(dāng)a<0時(shí),討論f(x)的單調(diào)性;
(Ⅲ)若對(duì)任意的a∈(-3,-2)及x1,x2∈[1,3],恒有(m+ln3)a-2ln3>|f(x1)-f(x2)|成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知函數(shù)y=f(x)定義域是[-2,3],則y=f(2x-1)的定義域是(  )
A.$[0,\frac{5}{2}]$B.[-1,4]C.$[-\frac{1}{2},2]$D.[-5,5]

查看答案和解析>>

同步練習(xí)冊(cè)答案