8.某工廠有一排風(fēng)管,如圖所示(單位:厘米),管身為中空的正五棱柱,底面邊長為10厘米,高為30厘米,求制作排風(fēng)管所需的平板下料面積(不考慮排風(fēng)管的壁厚).

分析 利用矩形的面積計(jì)算公式、棱柱的側(cè)面積計(jì)算公式即可得出.

解答 解:制作排風(fēng)管所需的平板下料面積S=30×10×5=1500cm2
故制作排風(fēng)管所需的平板下料面積為1500cm2

點(diǎn)評(píng) 本題考查了矩形的面積計(jì)算公式、棱柱的側(cè)面積計(jì)算公式,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.正項(xiàng)等比數(shù)列{an}中,a3=$\frac{1}{2}$,S2=3,則公比q的值是( 。
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.1或-$\frac{1}{2}$D.-1或-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知拋物線:x2=2y,過直線y=2x-3上任意一點(diǎn)P作拋物線的切線,切點(diǎn)分別為A,C
(I)求證:直線AC過定點(diǎn)M,并求出M點(diǎn);
(Ⅱ)記直線AP,CP的斜率分別為k1,k2,若k1•k2=-2,求△ACP的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知在三棱錐P-ABC中,PA⊥面ABC,PC⊥AB,若三棱錐P-ABC的外接球的半徑是3,S=S△ABC+S△ABP+S△ACP,則S的最大值是( 。
A.36B.28C.26D.18

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.正四棱錐S-ABCD的高和底面邊長都是4,則它的側(cè)面積為$4\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知y=f(x)是定義在R上的奇函數(shù),且f(x)=$\left\{\begin{array}{l}{(x+2)^{2}-1,x<-1}\\{0,-1≤x≤0}\\{\;}\end{array}\right.$,則函數(shù)y=f(x-1)-$\frac{1}{2}$(x-1)的零點(diǎn)個(gè)數(shù)為( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.在棱長為2的正方體ABCD-A1B1C1D1中,M為AB的中點(diǎn),經(jīng)過點(diǎn)A作D1M的垂面,該垂面被正方體截得部分的面積是( 。
A.3B.$\frac{3}{2}$C.$\frac{3\sqrt{2}}{2}$D.$\frac{3\sqrt{2}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在等比數(shù)列 {an}中,已知 a1=3,公比 q≠1,等差數(shù)列{bn} 滿足b1=a1,b4=a2,b13=a3
(1)求數(shù)列{an}與 {bn}的通項(xiàng)公式;
(2)記 cn=an•bn,求數(shù)列{cn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$,離心率為$\frac{{\sqrt{3}}}{2}$,橢圓上的點(diǎn)到直線$x=-\frac{{5\sqrt{5}}}{2}$的距離的最大值為$\frac{{9\sqrt{5}}}{2}$,傾斜角為45°的直線l交橢圓于不同的兩點(diǎn)A,B.
(1)求橢圓的方程;
(2)已知點(diǎn)M(4,1),當(dāng)直線l不過點(diǎn)M時(shí),求證:直線MA,MB與x軸圍成一個(gè)等腰三角形.

查看答案和解析>>

同步練習(xí)冊(cè)答案