精英家教網 > 高中數學 > 題目詳情

設數列的等差數列,如果那么

=                                                               

A.-182                     B.-78                       C.-148                     D.-82

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設等比數列{an}的前n項和為Sn,且an+1=2Sn+2(n∈N*)
(1)求數列{an}的通項公式;
(2)在an與an+1之間插入n個數,使這n+2個數成公差為dn的等差數列(如在a1與a2之間插入1個數構成第1個等差數列,其公差為d1;在a2與a3之間插入2個數構成第2個等差數列,其公差為d2,…,以此類推),設第n個等差數列的和是AnTn=
d1
A1
+
d2
A2
+…+
dn
An
,求Tn

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•汕尾二模)設等比數列{an}的前n項和為Sn,已知an+1=2Sn+2(n∈N*)
(1)求數列{an}的通項公式;
(2)在an與an+1之間插入n個數,使這n+2個數組成公差為dn的等差數列(如:在a1與a2之間插入1個數構成第一個等差數列,其公差為d1;在a2與a3之間插入2個數構成第二個等差數列,其公差為d2,…以此類推),設第n個等差數列的和是An.是否存在一個關于n的多項式g(n),使得An=g(n)dn對任意n∈N*恒成立?若存在,求出這個多項式;若不存在,請說明理由;
(3)對于(2)中的數列d1,d2,d3,…,dn,…,這個數列中是否存在不同的三項dm,dk,dp(其中正整數m,k,p成等差數列)成等比數列,若存在,求出這樣的三項;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2011•上海模擬)設等比數列{an}的前n項和為Sn,已知an+1=2Sn+2(n∈N*)
(1)求數列{an}的通項公式;
(2)在anan+1(n∈N*)之間插入n個1,構成如下的新數列:a1,1,a2,1,1,a3,1,1,1,a4,…,求這個數列的前2012項的和;
(3)在an與an+1之間插入n個數,使這n+2個數組成公差為dn的等差數列(如:在a1與a2之間插入1個數構成第一個等差數列,其公差為d1;在a2與a3之間插入2個數構成第二個等差數列,其公差為d2,…以此類推),設第n個等差數列的和是An.是否存在一個關于n的多項式g(n),使得An=g(n)dn對任意n∈N*恒成立?若存在,求出這個多項式;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設等比數列{an}的前n項和為Sn,已知數學公式
(1)求數列{an}的通項公式;
(2)在an與an+1之間插入n個數,使這n+2個數組成公差為dn的等差數列(如:在a1與a2之間插入1個數構成第一個等差數列,其公差為d1;在a2與a3之間插入2個數構成第二個等差數列,其公差為d2,…以此類推),設第n個等差數列的和是An.是否存在一個關于n的多項式g(n),使得An=g(n)dn對任意n∈N*恒成立?若存在,求出這個多項式;若不存在,請說明理由;
(3)對于(2)中的數列d1,d2,d3,…,dn,…,這個數列中是否存在不同的三項dm,dk,dp(其中正整數m,k,p成等差數列)成等比數列,若存在,求出這樣的三項;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源:汕尾二模 題型:解答題

設等比數列{an}的前n項和為Sn,已知an+1=2Sn+2(n∈N*)
(1)求數列{an}的通項公式;
(2)在an與an+1之間插入n個數,使這n+2個數組成公差為dn的等差數列(如:在a1與a2之間插入1個數構成第一個等差數列,其公差為d1;在a2與a3之間插入2個數構成第二個等差數列,其公差為d2,…以此類推),設第n個等差數列的和是An.是否存在一個關于n的多項式g(n),使得An=g(n)dn對任意n∈N*恒成立?若存在,求出這個多項式;若不存在,請說明理由;
(3)對于(2)中的數列d1,d2,d3,…,dn,…,這個數列中是否存在不同的三項dm,dk,dp(其中正整數m,k,p成等差數列)成等比數列,若存在,求出這樣的三項;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案