【題目】已知函數(shù)f(x)=log4(2x+3﹣x2).
(1)求f(x)的定義域及單調(diào)區(qū)間;
(2)求f(x)的最大值,并求出取得最大值時(shí)x的值;
(3)設(shè)函數(shù)g(x)=log4[(a+2)x+4],若不等式f(x)≤g(x)在x∈(0,3)上恒成立,求實(shí)數(shù)a的取值范圍.
【答案】
(1)解:令2x+3﹣x2>0,
解得:x∈(﹣1,3),
即f(x)的定義域?yàn)椋ī?,3),
令t=2x+3﹣x2,
則y=log4t,
∵y=log4t為增函數(shù),
x∈(﹣1,1]時(shí),t=2x+3﹣x2為增函數(shù);
x∈[1,3)時(shí),t=2x+3﹣x2為減函數(shù);
故f(x)的單調(diào)增區(qū)間為(﹣1,1];f(x)的單調(diào)減區(qū)間為[1,3)
(2)解:由(1)知當(dāng)x=1時(shí),t=2x+3﹣x2取最大值4,
此時(shí)函數(shù)f(x)取最大值1
(3)解:若不等式f(x)≤g(x)在x∈(0,3)上恒成立,
則2x+3﹣x2≤(a+2)x+4在x∈(0,3)上恒成立,
即x2+ax+1≥0在x∈(0,3)上恒成立,
即a≥﹣(x+ )在x∈(0,3)上恒成立,
當(dāng)x∈(0,3)時(shí),x+ ≥2,則﹣(x+ )≤﹣2,
故a≥﹣2
【解析】(1)令2x+3﹣x2>0,可得函數(shù)的定義域,利用復(fù)合函數(shù)“同增異減”的原則,可得函數(shù)f(x)的單調(diào)區(qū)間;(2)由(1)中函數(shù)的單調(diào)性,可得當(dāng)x=1時(shí),函數(shù)f(x)取最大值1;(3)若不等式f(x)≤g(x)在x∈(0,3)上恒成立,即a≥﹣(x+ )在x∈(0,3)上恒成立,解得實(shí)數(shù)a的取值范圍.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解復(fù)合函數(shù)單調(diào)性的判斷方法的相關(guān)知識(shí),掌握復(fù)合函數(shù)f[g(x)]的單調(diào)性與構(gòu)成它的函數(shù)u=g(x),y=f(u)的單調(diào)性密切相關(guān),其規(guī)律:“同增異減”.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)在區(qū)間上的最大值;
(2)若是函數(shù)圖像上不同的三點(diǎn),且,試判斷與之間的大小關(guān)系,并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】不等式(x+2)(x﹣1)>0的解集為( )
A.{x|x<﹣2或x>1}
B.{x|﹣2<x<1}
C.{x|x<﹣1或x>2}
D.{x|﹣1<x<2}
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= ,若存在x1 , x2∈R且x1≠x2 , 使得f(x1)=f(x2)成立,則實(shí)數(shù)a的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= (a、b為常數(shù)),且f(1)= ,f(0)=0.
(1)求函數(shù)f(x)的解析式;
(2)判斷函數(shù)f(x)在定義域上的奇偶性,并證明;
(3)對(duì)于任意的x∈[0,2],f(x)(2x+1)<m4x恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【選做題】在A、B、C、D四小題中只能選做2題,每小題10分,共計(jì)20分.請(qǐng)?jiān)?/span>答卷卡指定區(qū)域內(nèi)作答.解答應(yīng)寫出文字說明、證明過程或演算步驟.
A.選修4—1:幾何證明選講
如圖,△ABC的頂點(diǎn)A,C在圓O上,B在圓外,線段AB與圓O交于點(diǎn)M.
(1)若BC是圓O的切線,且AB=8,BC=4,求線段AM的長度;
(2)若線段BC與圓O交于另一點(diǎn)N,且AB=2AC,求證:BN=2MN.
B.選修4—2:矩陣與變換
設(shè)a,b∈R.若直線l:ax+y-7=0在矩陣A= 對(duì)應(yīng)的變換作用下,得到的直線為l′:9x+y-91=0.求實(shí)數(shù)a,b的值.
C.選修4—4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系xOy中,直線l: (t為參數(shù)),與曲線C: (k為參數(shù))交于A,B兩點(diǎn),求線段AB的長.
D.選修4—5:不等式選講
設(shè)a≠b,求證:a4+6a2b2+b4>4ab(a2+b2).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)集合A={x|y=log2(x﹣1)},B={y|y=﹣x2+2x﹣2,x∈R}
(1)求集合A,B;
(2)若集合C={x|2x+a<0},且滿足B∪C=C,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于任意實(shí)數(shù)x,符號(hào)[x]表示不超過x的最大整數(shù),如[2.2]=2,[﹣3.5]=﹣4,設(shè)數(shù)列{an}的通項(xiàng)公式為an=[log21]+[log22]+[log23]+…[log2(2n﹣1)].
(1)求a1a2a3的值;
(2)是否存在實(shí)數(shù)a,使得an=(n﹣2)2n+a(n∈N*),并說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com