圓x2+y2-2x+y+
1
4
=0的圓心坐標和半徑分別是( 。
分析:圓x2+y2-2x+y+
1
4
=0,可化為(x-1)2+(y+
1
2
2=1,從而可得圓心坐標和半徑.
解答:解:圓x2+y2-2x+y+
1
4
=0,可化為(x-1)2+(y+
1
2
2=1,
∴圓心坐標為(1,-
1
2
),半徑為1
故選B.
點評:本題考查圓的一般方程,考查學(xué)生分析解決問題的能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

圓x2+y2-2x-1=0關(guān)于直線2x-y+3=0對稱的圓的方程是( 。
A、(x+3)2+(y-2)2=
1
2
B、(x-3)2+(y+2)2=
1
2
C、(x+3)2+(y-2)2=2
D、(x-3)2+(y+2)2=2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

當(dāng)圓x2+y2+2x+ky+k2=0的面積最大時,圓心坐標是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過點(2,1)的直線中,被圓x2+y2-2x-4y=0截得的弦長最短的直線方程為
x-y-1=0
x-y-1=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓x2+y2-2x+6y+9=0的周長等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓 x2+y2=4與圓x2+y2-2x+y-5=0相交,則它們的公共弦所在的直線方程是
2x-y+1=0
2x-y+1=0

查看答案和解析>>

同步練習(xí)冊答案