15.已知偶函數(shù)f(x)在[0,+∞)單調(diào)遞減,若f(x-2)>f(3),則x的取值范圍是(-1,5).

分析 根據(jù)函數(shù)奇偶性和單調(diào)性之間的關系,將不等式進行轉化即可.

解答 解:∵偶函數(shù)f(x)在[0,+∞)單調(diào)遞減,
∴不等式f(x-2)>f(3)等價為f(|x-2|)>f(3),
則|x-2|<3,
即-3<x-2<3,
則-1<x<5,
即不等式的解集為(-1,5).
故答案為(-1,5).

點評 本題主要考查不等式的求解,利用函數(shù)奇偶性和單調(diào)性之間的關系進行轉化是解決本題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

5.二項式${({x+\frac{1}{2x}})^9}$展開式中,x3項的系數(shù)為$\frac{21}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.△ABC中,B=45°,C=60°,c=1,則b等于$\frac{\sqrt{6}}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.設集合M={x|x2-mx+6=0,x∈R}且M∩{2,3}=M,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.直線l:3x-4y+5=0被圓x2+y2=r2截得的弦長為2$\sqrt{3}$,則半徑r的值為2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.由代數(shù)式的乘法法則類比推導向量的數(shù)量積的運算法則:
①由“mn=nm”類比得到“$\overrightarrow a$•$\overrightarrow b$=$\overrightarrow b$•$\overrightarrow a$”;
②由“(m+n)t=mt+nt”類比得到“($\overrightarrow a$+$\overrightarrow b$)•$\overrightarrow c$=$\overrightarrow a$•$\overrightarrow c$+$\overrightarrow b$$\overrightarrow{•c}$”;
③由“t≠0,mt=xt⇒m=x”類比得到“$\overrightarrow p$≠$\overrightarrow 0$,$\overrightarrow a$•$\overrightarrow p$=$\overrightarrow x$•$\overrightarrow p$⇒$\overrightarrow a$=$\overrightarrow x$”;
④由“|mn|=|m|•|n|”類比得到“|${\overrightarrow a$•$\overrightarrow b$|=|${\overrightarrow a}$|•|${\overrightarrow b}$|”.以上結論正確的是( 。
A.①③B.①②C.②③D.②④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知函數(shù)f(x)=$\frac{1}{2}$x2+$\frac{x}$+c(b,c是常數(shù))和g(x)=$\frac{1}{4}$x+$\frac{1}{x}$都是定義在M={x|1≤x≤4}上的函數(shù),對于任意的x∈M,存在x0∈M,使得f(x)≥f(x0)且g(x)≥g(x0)且f(x0)=g(x0),求f(x)在集合M上的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.兩圓x2+y2-6y=0和x2+y2-8x+12=0的位置關系為( 。
A.相交B.外切C.內(nèi)切D.相離

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.我國古代數(shù)學名著《數(shù)書九章》有“米谷粒分”題:糧倉開倉收糧,有人送來米1524石,驗得米內(nèi)夾谷,抽樣取米一把,數(shù)得254粒內(nèi)夾谷28粒,則這批米內(nèi)夾谷約為(  )
A.1365石B.338石C.168石D.134石

查看答案和解析>>

同步練習冊答案