【題目】對于集合,,,.集合中的元素個數(shù)記為.規(guī)定:若集合滿足,則稱集合具有性質(zhì).
(I)已知集合,,寫出,的值;
(II)已知集合,為等比數(shù)列,,且公比為,證明:具有性質(zhì);
(III)已知均有性質(zhì),且,求的最小值.
【答案】(I); (II)見解析; (III).
【解析】
(Ⅰ)分別求得A+A,B+B,然后可得,的值;
(Ⅱ)將原問題進行等價變形,然后利用反證法證明題中的結(jié)論即可;
(Ⅲ)原問題等價于任意兩個元素之和均不相同,且任意兩個不同元素之差的絕對值均不相同.據(jù)此整理計算即可確定的最小值.
(I)由題意可得:,,
故
(II)要證具有性質(zhì),只需證明,若,則.
假設上式結(jié)論不成立,即若,則.
即,即,
,.
因為上式的右邊為的倍數(shù),而上式的左邊為的倍數(shù),所以上式不成立.
故假設不成立,原命題成立.
(III)由題意,集合具有性質(zhì),等價于任意兩個元素之和均不相同.
如,對于任意的,有,
等價于,即任意兩個不同元素之差的絕對值均不相同.
令,
所以具有性質(zhì).
因為集合均有性質(zhì),且,
所以,當且僅當時等號成立.
所以的最小值為.
科目:高中數(shù)學 來源: 題型:
【題目】某高三理科班共有名同學參加某次考試,從中隨機挑出名同學,他們的數(shù)學成績與物理成績如下表:
數(shù)學成績 | |||||
物理成績 |
(1)數(shù)據(jù)表明與之間有較強的線性關(guān)系,求關(guān)于的線性回歸方程;
(2)本次考試中,規(guī)定數(shù)學成績達到分為優(yōu)秀,物理成績達到分為優(yōu)秀.若該班數(shù)學優(yōu)秀率與物理優(yōu)秀率分別為和,且除去抽走的名同學外,剩下的同學中數(shù)學優(yōu)秀但物理不優(yōu)秀的同學共有人,請寫出列聯(lián)表,判斷能否在犯錯誤的概率不超過的前提下認為數(shù)學優(yōu)秀與物理優(yōu)秀有關(guān)?
參考數(shù)據(jù):,;,;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)h(x)=(m2-5m+1)xm+1為冪函數(shù),且為奇函數(shù).
(I)求m的值;
(II)求函數(shù)g(x)=h(x)+,x∈的值域.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲乙兩位同學整理了某學科高三以來9次考試的成績(甲缺席了其中3次考試,只有6次成績),得到如下莖葉圖.
(1)若用分層抽樣的方法從兩人的15個成績選取5個評估,應選取甲的幾次成績?若分層抽樣時對甲的成績采用隨機抽取,求選取到的甲的成績至少有一次高于85分的概率;
(2)試通過表中的所有數(shù)據(jù),從平均水平和穩(wěn)定性來評判兩位同學該學科的考試成績.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】f(x)是定義在區(qū)間[-c,c]上的奇函數(shù),其圖象如下圖所示.令g(x)=af(x)+b,則下列關(guān)于函數(shù)g(x)的結(jié)論:
①若a<0,則函數(shù)g(x)的圖象關(guān)于原點對稱;
②若a=-1,-2<b<0,則方程g(x)=0有大于2的實根;
③若a≠0,b=2,則方程g(x)=0有兩個實根;
④若a≠0,b=2,則方程g(x)=0有三個實根.
其中,正確的結(jié)論為________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在極坐標系中,曲線,,C與l有且僅有一個公共點.
(Ⅰ)求a;
(Ⅱ)O為極點,A,B為C上的兩點,且,求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}的前n項和Sn=pn+q(p≠0且p≠1),求證:數(shù)列{an}為等比數(shù)列的充要條件為q=-1.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】貨車欲以xkm/h的速度行駛,去130km遠的某地,按交通法規(guī),限制x的允許范圍是50≤x≤100,假設汽油的價格為2元/升,而汽車耗油的速率是升/小時.司機的工資是14元/小時,試問最經(jīng)濟的車速是多少?這次行車往返的總費用最低是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com