已知

(Ⅰ)求的最大值及取得最大值時(shí)x的值;

(Ⅱ)在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,若,,,求△ABC的面積.

 

【答案】

(Ⅰ)時(shí),函數(shù)取得最大值2.(Ⅱ).

【解析】

試題分析:(Ⅰ)將展開(kāi)化一,化為的形式,然后利用正弦函數(shù)的最大值,即可求得函數(shù)取得最大值.(Ⅱ)由(Ⅰ)得,即,這是一個(gè)特殊值,可求得.因?yàn)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2014030904533731831100/SYS201403090453595371801325_DA.files/image010.png">,根據(jù)正弦定理,得.這樣得到一個(gè)關(guān)于的方程,再用余弦定理列一個(gè)關(guān)于的方程,解方程組,便可得的值,從而可求出△ABC的面積.

試題解析:(Ⅰ)

. 2分

當(dāng),即時(shí),函數(shù)取得最大值2. 4分

(Ⅱ)由,得,

,∴,解得. 6分

因?yàn)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2014030904533731831100/SYS201403090453595371801325_DA.files/image010.png">,根據(jù)正弦定理,得, 8分

由余弦定理,有,

解得,, 10分

故△ABC的面積. 12分

考點(diǎn):1、三角恒等變換;2、三角函數(shù)的最值;3、正弦定理與余弦定理.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(08年長(zhǎng)郡中學(xué)二模理)(12分)

  已知函數(shù)

    (1)求的最小正周期及取得最大值時(shí)x的集合;

    (2)求證:函數(shù)的圖象關(guān)于直線對(duì)稱(chēng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)

(Ⅰ)求的最小正周期;

(Ⅱ)當(dāng)時(shí),求的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015屆山東省高一6月月考數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)

(1)求的最小正周期及取得最大值時(shí)x的集合;

(2)在平面直角坐標(biāo)系中畫(huà)出函數(shù)上的圖象.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年海南省高三上學(xué)期第二次月考理科數(shù)學(xué)卷 題型:解答題

(本題滿(mǎn)分12分)

    已知函數(shù)

   (1)求的最小正周期和單調(diào)遞增區(qū)間;

   (2)若上恒成立,求實(shí)數(shù)的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年河南省焦作市高一下學(xué)期數(shù)學(xué)必修4水平測(cè)試 題型:解答題

(10分)已知函數(shù).

(1)求的最小正周期;

(2)求在區(qū)間上的最大值和最小值以及取得最大值、最小值時(shí)x的值.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案