已知
、
分別為橢圓
:
的上、下焦點,其中
也是拋物線
:
的焦點,點
是
與
在第二象限的交點,且
。
(Ⅰ)求橢圓的方程;
(Ⅱ)已知點
(1,3)和圓
:
,過點
的動直線
與圓
相交于不同的兩點
,在線段
取一點
,滿足:
,
(
且
)。
求證:點
總在某定直線上。
(Ⅰ)
(Ⅱ)設(shè)
由
可得
由
可得
⑤×⑦得:
,⑥×⑧得:
,兩式相加得
又點A,B在圓
上,且
,
所以
,
即
,所以點Q總在定直線
上
試題分析:(1)由
:
知
(0,1),設(shè)
,因M在拋物線
上,故
① 又
,則
②,
由①②解得
(3分)
橢圓
的兩個焦點
(0,1),
,點M在橢圓上,有橢圓定義可得
∴
又
,∴
,橢圓
的方程為:
(6分)
(2)設(shè)
,
由
可得:
,
即
(9分)
由
可得:
,
即
⑤×⑦得:
⑥×⑧得:
(10分)
兩式相加得
(11分)
又點A,B在圓
上,且
,
所以
,
即
,所以點Q總在定直線
上 (12分)
點評:解題時充分利用拋物線的定義:拋物線上的點到焦點的距離等于到準(zhǔn)線的距離,能使解題過程簡化;第二問中的向量關(guān)系常轉(zhuǎn)化為點的坐標(biāo)關(guān)系,證明點在定直線上的主要思路是驗證點的坐標(biāo)始終滿足于某直線方程
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
如右圖,拋物線C:
(p>0)的焦點為F,A為C上的點,以F為圓心,
為半徑的圓與線段AF的交點為B,∠AFx=60°,A在y軸上的射影為N,則∠
=
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
若直線的極坐標(biāo)方程為
,曲線
:
上的點到直線的距離為
,則
的最大值為_________.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
直線
與拋物線
所圍成的圖形面積是( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,過拋物線
(
>0)的頂點作兩條互相垂直的弦OA、OB。
⑴設(shè)OA的斜率為k,試用k表示點A、B的坐標(biāo);
⑵求弦AB中點M的軌跡方程。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
已知拋物線
的準(zhǔn)線經(jīng)過橢圓
的左焦點,且經(jīng)過拋物線與橢圓兩個交點的弦過拋物線的焦點,則橢圓的離心率為_____________
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知雙曲線
,
為雙曲線
的右焦點,點
,
為
軸正半軸上的動點。
則
的最大值為( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
焦點在
軸上,漸近線方程為
的雙曲線的離心率為_______.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
過雙曲線
左焦點
的直線與以右焦點
為圓心、
為半徑的圓相切于A點,且
,則雙曲線的離心率為
查看答案和解析>>