【題目】動(dòng)點(diǎn)從坐標(biāo)原點(diǎn)出發(fā)沿著拋物線移動(dòng)到點(diǎn),則在移動(dòng)過程中當(dāng)為最大時(shí),點(diǎn)的橫坐標(biāo)________.
【答案】
【解析】
如圖所示,以和為兩個(gè)焦點(diǎn)作一個(gè)橢圓與弧段(拋物線弧段)相切于點(diǎn)(弧段整個(gè)地包含于橢圓內(nèi)部或邊界上.若有幾個(gè)切點(diǎn),則任取其中一點(diǎn)).由橢圓的定義可推知:橢圓內(nèi)部的點(diǎn)到兩個(gè)焦點(diǎn)的距離之和小于橢圓上的點(diǎn)到兩個(gè)焦點(diǎn)的距離之和(用三角形兩邊之和大于第三邊易證),所以,對弧段上任意一點(diǎn),必有,即就是最大值.下面求點(diǎn)的橫坐標(biāo).
過點(diǎn)作橢圓和拋物線的公切線,則由橢圓的光學(xué)反射性質(zhì)知:和與的夾角相等.設(shè)點(diǎn)的坐標(biāo)為,則的斜率為(參見第一試第五題的題注),的斜率為,而的斜率為.由兩直線間的夾角公式得,化簡得 .
配方得 .取其正根得.綜合上述知,當(dāng)為最大時(shí),點(diǎn)橫坐標(biāo).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)是橢圓的右焦點(diǎn),點(diǎn),分別是軸,軸上的動(dòng)點(diǎn),且滿足.若點(diǎn)滿足(為坐標(biāo)原點(diǎn)).
(Ⅰ)求點(diǎn)的軌跡的方程;
(Ⅱ)設(shè)過點(diǎn)任作一直線與點(diǎn)的軌跡交于,兩點(diǎn),直線,與直線分別交于點(diǎn),,試判斷以線段為直徑的圓是否經(jīng)過點(diǎn)?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,且經(jīng)過點(diǎn).
求橢圓的標(biāo)準(zhǔn)方程;
設(shè)為橢圓的中線,點(diǎn),過點(diǎn)的動(dòng)直線交橢圓于另一點(diǎn),直線上的點(diǎn)滿足,求直線與的交點(diǎn)的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中正確的是( )
A. 命題:,,則命題:,
B. “”是“”的充要條件
C. 命題“若,則或”的逆否命題是“若或,則”
D. 命題:,;命題:對,總有;則是真命題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),
(1)若關(guān)于的不等式的解集為,求實(shí)數(shù)的值;
(2)求不等式的解集;
(3)若對于,恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在四棱臺中,底面,四邊形為菱形,,.
(1)若為中點(diǎn),求證:平面;
(2)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年,隨著中國第一款5G手機(jī)投入市場,5G技術(shù)已經(jīng)進(jìn)入高速發(fā)展階段.已知某5G手機(jī)生產(chǎn)廠家通過數(shù)據(jù)分析,得到如下規(guī)律:每生產(chǎn)手機(jī)萬臺,其總成本為,其中固定成本為800萬元,并且每生產(chǎn)1萬臺的生產(chǎn)成本為1000萬元(總成本=固定成本+生產(chǎn)成本),銷售收入萬元滿足
(1)將利潤表示為產(chǎn)量萬臺的函數(shù);
(2)當(dāng)產(chǎn)量為何值時(shí),公司所獲利潤最大?最大利潤為多少萬元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com