【題目】設(shè):實(shí)數(shù)滿足,:實(shí)數(shù)滿足.

(1)若,且為真,求實(shí)數(shù)的取值范圍;

(2)若,且的充分不必要條件,求實(shí)數(shù)的取值范圍.

【答案】12x32≤a≤2

【解析】

試題(1)由得(x-a)(x-2a+1))<0,當(dāng)a=1時(shí),代入可得.由|x-3|1,得-1x-31,即可得出.利用p∧q為真,則p真且q真,即可得出;(2)若¬p是¬q的充分不必要條件,可得qp的充分不必要條件,即可得出

試題解析:(1)由x23a+1x+2a2+a0得(x﹣a)(x﹣2a+1))<0

當(dāng)a=1時(shí),1x3,即p為真時(shí)實(shí)數(shù)x的取值范圍是1x3

|x﹣3|1,得﹣1x﹣31,得2x4

q為真時(shí)實(shí)數(shù)x的取值范圍是2x4,

p∧q為真,則p真且q真,

實(shí)數(shù)x的取值范圍是2x3

2)若¬p是¬q的充分不必要條件,

則¬pq,且¬qp,

設(shè)A={x|p}B={x|q},則AB,

A={x|p}={x|x≤ax≥2a+1},

B={x|q}={x|x≥4x≤2},

0a≤2,且2a+1≥4

實(shí)數(shù)a的取值范圍是≤a≤2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一張坐標(biāo)紙上一已作出圓及點(diǎn)折疊此紙片,使與圓周上某點(diǎn)重合,每次折疊都會(huì)留下折痕設(shè)折痕與直線的交點(diǎn)為,令點(diǎn)的軌跡為.

(1)求軌跡的方程;

(2)若直線與軌跡交于兩個(gè)不同的點(diǎn),且直線與以為直徑的圓相切,,的面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸,取相同的長(zhǎng)度單位建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)求曲線的直角坐標(biāo)方程;

(2)在平面直角坐標(biāo)系中,將曲線的縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉?lái)的2倍,得到曲線,過(guò)點(diǎn)作直線,交曲線兩點(diǎn),若,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,直線與圓C相切,圓心C的坐標(biāo)為

1)求圓C的方程;

2)設(shè)直線y=x+m與圓C交于M、N兩點(diǎn).

①若,求m的取值范圍;

②若OMON,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2017年是內(nèi)蒙古自治區(qū)成立70周年.某市旅游文化局為了慶祝內(nèi)蒙古自治區(qū)成立70周年,舉辦了第十三屆成吉思汗旅游文化周.為了了解該市關(guān)注“旅游文化周”居民的年齡段分布,隨機(jī)抽取了名年齡在且關(guān)注“旅游文化周”的居民進(jìn)行調(diào)查,所得結(jié)果統(tǒng)計(jì)為如圖所示的頻率分布直方圖.

年齡

單人促銷價(jià)格(單位:元)

(Ⅰ)根據(jù)頻率分布直方圖,估計(jì)該市被抽取市民的年齡的平均數(shù);

(Ⅱ)某旅行社針對(duì)“旅游文化周”開展不同年齡段的旅游促銷活動(dòng),各年齡段的促銷價(jià)位如表所示.已知該旅行社的運(yùn)營(yíng)成本為每人元,以頻率分布直方圖中各年齡段的頻率分布作為參團(tuán)旅客的年齡頻率分布,試通過(guò)計(jì)算確定該旅行社的這一活動(dòng)是否盈利;

(Ⅲ)若按照分層抽樣的方法從年齡在 的居民中抽取人進(jìn)行旅游知識(shí)推廣,并在知識(shí)推廣后再抽取人進(jìn)行反饋,求進(jìn)行反饋的居民中至少有人的年齡在的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2017年“十一”期間,高速公路車輛較多.某調(diào)查公司在一服務(wù)區(qū)從七座以下小型汽車中按進(jìn)服務(wù)區(qū)的先后每間隔50輛就抽取一輛的抽樣方法抽取40名駕駛員進(jìn)行詢問調(diào)查,將他們?cè)谀扯胃咚俟返能囁伲?/span>)分成六段: , , , , , ,后得到如圖的頻率分布直方圖.

(1)求這40輛小型車輛車速的眾數(shù)和中位數(shù)的估計(jì)值;

(2)若從車速在的車輛中任抽取2輛,求車速在的車輛恰有一輛的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程是 (為參數(shù)),以原點(diǎn)為極點(diǎn), 軸正半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

(Ⅰ)求曲線的普通方程與直線的直角坐標(biāo)方程;

(Ⅱ)已知直線與曲線交于, 兩點(diǎn),與軸交于點(diǎn),求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知是橢圓的兩個(gè)焦點(diǎn),且點(diǎn)在橢圓C上.

1)求橢圓C的方程;

2)直線(m>0)與橢圓C有且僅有一個(gè)公共點(diǎn),且與x軸和y軸分別交于點(diǎn)M,N,當(dāng)△OMN面積取最小值時(shí),求此時(shí)直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若動(dòng)圓與圓外切,且與直線相切,則動(dòng)圓圓心的軌跡方程是( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案