設(shè),用反證法證明:
對于正面難證明的運(yùn)用反證法來證明,先否定結(jié)論,然后在此基礎(chǔ)上推理論證得到矛盾。

試題分析:證明:假設(shè),由于所以
=
,由此得,這是不可能的。故原不等式成立。
點(diǎn)評:主要是考查了運(yùn)用反證法來證明不等式的運(yùn)用,屬于基礎(chǔ)題。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知f(n)=1+(n∈N*),經(jīng)計(jì)算得f(4)>2,f(8)>,f(16)>3,f(32)>,……,觀察上述結(jié)果,則可歸納出一般結(jié)論為     。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

觀察下列等式:
 




照此規(guī)律, 第n個(gè)等式可為       .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

有一個(gè)奇數(shù)列1,3,5,7,9,…,現(xiàn)進(jìn)行如下分組:第1組含有一個(gè)數(shù){1},第2組含兩個(gè)數(shù){3,5};第3組含三個(gè)數(shù){7,9,11};…試觀察每組內(nèi)各數(shù)之和與其組的編號數(shù)n的關(guān)系為(  ).
A.等于n2B.等于n3C.等于n4D.等于n(n+1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

有一段演繹推理是這樣的:“指數(shù)函數(shù)是增函數(shù);是指數(shù)函數(shù);是增函數(shù)”,結(jié)論顯然是錯(cuò)誤的,原因是(   )
A.大前提錯(cuò)誤B.小前提錯(cuò)誤C.推理形式錯(cuò)誤D.非以上錯(cuò)誤

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

三角形的面積為為三角形的邊長,r為三角形內(nèi)切圓的半徑,利用類比推理,可得出四面體的體積為(  )
A.
B.
C.
D.分別為四面體的四個(gè)面的面積,r為四面體內(nèi)切球的半徑)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

古希臘著名的畢達(dá)哥拉斯學(xué)派把1、3、6、10 這樣的數(shù)稱為“三角形數(shù)”,而把1、4、9、16 這樣的數(shù)稱為“正方形數(shù)”.如圖中可以發(fā)現(xiàn),任何一個(gè)大于1的“正方形數(shù)”都可以看作兩個(gè)相鄰“三角形數(shù)”之和,下列等式中,符合這一規(guī)律的表達(dá)式是    
①13=3+10; ②25=9+16   ③36=15+21;  ④49=18+31;⑤64=28+36

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

用反證法證明:如果a>b>0,則.其中假設(shè)的內(nèi)容應(yīng)是(     )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知“凡是9的倍數(shù)的自然數(shù)都是3的倍數(shù)”和“自然數(shù)是9的倍數(shù)”,根據(jù)三段論推理規(guī)則,我們可以得到的結(jié)論是      

查看答案和解析>>

同步練習(xí)冊答案