分析 (1)利用正弦定理化簡(jiǎn)已知等式,利用兩角和與差的正弦函數(shù)公式及誘導(dǎo)公式化簡(jiǎn),根據(jù)sinC不為0求出cosA的值,進(jìn)而利用同角三角函數(shù)基本關(guān)系式可求sinA的值.
(2)由已知利用三角形面積公式可求bc=3,利用余弦定理即可求得b2+c2=6,進(jìn)而可求b+c的值.
解答 解:(1)在△ABC中,由acosB=(3c-b)cosA及正弦定理得(3sinC-sinB)cosA=sinAcosB,
得3sinCcosA=sinAcosB+cosAsinB=sin(A+B),
∵A+B+C=π,
∴sin(A+B)=sinC≠0,
∴cosA=$\frac{1}{3}$,
∴sinA=$\sqrt{1-co{s}^{2}A}$=$\frac{2\sqrt{2}}{3}$.
由正弦定理得:$\frac{a}{sinA}$=$\frac{sinB}$①
∵asinB=2$\sqrt{2}$,②
聯(lián)立①②,得
b=$\frac{2\sqrt{2}}{sinA}$=$\frac{2\sqrt{2}}{\frac{2\sqrt{2}}{3}}$=3;
(2)∵△ABC的面積為$\sqrt{2}$=$\frac{1}{2}$bcsinA=$\frac{1}{2}$×bc×$\frac{2\sqrt{2}}{3}$,
∴解得:bc=3.
∵cosA=$\frac{1}{3}$,a=2$\sqrt{2}$,利用余弦定理可得:8=b2+c2-2×bc×$\frac{1}{3}$=b2+c2-2,可得:b2+c2=10,
∴b+c=$\sqrt{(b+c)^{2}}$=$\sqrt{^{2}+{c}^{2}+2bc}$=$\sqrt{6+2×3}$=2$\sqrt{3}$.
點(diǎn)評(píng) 此題考查了正弦定理,兩角和與差的正弦函數(shù)公式,誘導(dǎo)公式,余弦定理,三角形面積公式以及特殊角的三角函數(shù)值,熟練掌握相關(guān)定理及公式是解本題的關(guān)鍵,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\frac{5}{12}$ | B. | $-\frac{7}{13}$ | C. | $\frac{12}{13}$ | D. | $\frac{5}{13}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 1+$\sqrt{3}$ | C. | 16 | D. | $\frac{1+\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com