【題目】已知函數(shù), .

(1)處的切線方程;

(2)當(dāng)時(shí),求上的最大值;

(3)求證:的極大值小于1.

【答案】(1);(2)故當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),;(3)詳見(jiàn)解析.

【解析】

(1)求出函數(shù)的導(dǎo)數(shù),根據(jù)導(dǎo)數(shù)的幾何意義求出切線斜率再由點(diǎn)斜式可得結(jié)果;(2)求出的解析式,求出,分別令可得函數(shù)增區(qū)間,令可得函數(shù)的減區(qū)間,分類(lèi)討論,根據(jù)函數(shù)的單調(diào)性可求出的最大值;(3)求出函數(shù)的導(dǎo)數(shù),兩次求導(dǎo)可判斷函數(shù)的單調(diào)性,利用單調(diào)性求出函數(shù)的極值,判斷即可.

(1)∵,

,∴處的切線方程為,

,

(2),(),令,得

在區(qū)間上,,函數(shù)是增函數(shù);

在區(qū)間上,,函數(shù)是減函數(shù);

故當(dāng)時(shí),上遞減,.

當(dāng)時(shí),先增后減,故.

當(dāng)時(shí),上遞增,此時(shí).

(3),令,

,則函數(shù)上單調(diào)遞減,,,所以存在唯一的,

當(dāng)時(shí),

當(dāng)時(shí),,所以函數(shù)的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是,其中,所以函數(shù)有極大值.

函數(shù)的極大值是,由,得,

所以,因?yàn)?/span>,所以,即

所以的極大值小于1.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】()(2017·開(kāi)封二模)為備戰(zhàn)某次運(yùn)動(dòng)會(huì),某市體育局組建了一個(gè)由4個(gè)男運(yùn)動(dòng)員和2個(gè)女運(yùn)動(dòng)員組成的6人代表隊(duì)并進(jìn)行備戰(zhàn)訓(xùn)練.

(1)經(jīng)過(guò)備戰(zhàn)訓(xùn)練,從6人中隨機(jī)選出2人進(jìn)行成果檢驗(yàn),求選出的2人中至少有1個(gè)女運(yùn)動(dòng)員的概率.

(2)檢驗(yàn)結(jié)束后,甲、乙兩名運(yùn)動(dòng)員的成績(jī)用莖葉圖表示如圖:

計(jì)算說(shuō)明哪位運(yùn)動(dòng)員的成績(jī)更穩(wěn)定.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中國(guó)明代商人程大位對(duì)文學(xué)和數(shù)學(xué)也頗感興趣,他于60歲時(shí)完成杰作直指算法統(tǒng)宗,這是一本風(fēng)行東亞的數(shù)學(xué)名著,該書(shū)第五卷有問(wèn)題云:“今有白米一百八十石,令三人從上及和減率分之,只云甲多丙米三十六石,問(wèn):各該若干?”翻譯成現(xiàn)代文就是:“今有百米一百八十石,甲乙丙三個(gè)人來(lái)分,他們分得的米數(shù)構(gòu)成等差數(shù)列,只知道甲比丙多分三十六石,那么三人各分得多少米?”請(qǐng)你計(jì)算甲應(yīng)該分得  

A. 78 B. 76 C. 75 D. 74

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】摩拜單車(chē)和小黃車(chē)等各種共享單車(chē)的普及給我們的生活帶來(lái)了便利.已知某共享單車(chē)的收費(fèi)標(biāo)準(zhǔn)是:每車(chē)使用不超過(guò)1小時(shí)(包含1小時(shí))是免費(fèi)的,超過(guò)1小時(shí)的部分每小時(shí)收費(fèi)1元(不足1小時(shí)的部分按1小時(shí)計(jì)算,例如:騎行2.5小時(shí)收費(fèi)2元).現(xiàn)有甲、乙兩人各自使用該種共享單車(chē)一次.設(shè)甲、乙不超過(guò)1小時(shí)還車(chē)的概率分別為1小時(shí)以上且不超過(guò)2小時(shí)還車(chē)的概率分別為兩人用車(chē)時(shí)間都不會(huì)超過(guò)3小時(shí).

(Ⅰ)求甲乙兩人所付的車(chē)費(fèi)相同的概率;

)設(shè)甲乙兩人所付的車(chē)費(fèi)之和為隨機(jī)變量的分布列及數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,直線.

(1)直線是否過(guò)定點(diǎn)?若過(guò)定點(diǎn),求出該定點(diǎn)坐標(biāo),若不過(guò)定點(diǎn),請(qǐng)說(shuō)明理由;

(2)已知點(diǎn),若直線上存在點(diǎn)滿足條件,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解學(xué)生的身體狀況,某校隨機(jī)抽取了一批學(xué)生測(cè)量體重.經(jīng)統(tǒng)計(jì),這批學(xué)生的體重?cái)?shù)據(jù)(單位:千克)全部介于之間,將數(shù)據(jù)分成以下組:第,第,第,第,第,得到如圖所示的頻率分布直方圖,現(xiàn)采用分層抽樣的方法,從第, 組中隨機(jī)抽取名學(xué)生做初檢.

)求每組抽取的學(xué)生人數(shù).

)若從名學(xué)生中再次隨機(jī)抽取名學(xué)生進(jìn)行復(fù)檢,求這名學(xué)生不在同一組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角梯形中, , , 平面, , 的中點(diǎn)為

)求證:

)求證:平面平面

)當(dāng)為何值時(shí),能使?請(qǐng)給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)是由一平面內(nèi)的個(gè)向量組成的集合,且的模不小于中除外的所有向量和的模.則稱(chēng)的極大向量.有下列命題:

中每個(gè)向量的方向都相同,則中必存在一個(gè)極大向量;

給定平面內(nèi)兩個(gè)不共線向量,在該平面內(nèi)總存在唯一的平面向量,使得中的每個(gè)元素都是極大向量;

③若中的每個(gè)元素都是極大向量,且中無(wú)公共元素,則中的每一個(gè)元素也都是極大向量.

其中真命題的序號(hào)是_______________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),討論函數(shù)的單調(diào)性;

(2)若不等式 對(duì)于任意成立,求正實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案