11.已知函數(shù)f(x)=x+asinx在(-∞,+∞)上單調(diào)遞增,則實數(shù)a的取值范圍是[-1,1].

分析 函數(shù)在區(qū)間單調(diào)遞增,則導函數(shù)在該區(qū)間的值大于等于0恒成立,在通過換主元求參數(shù)范圍.

解答 解:∵函數(shù)f(x)=x+asinx在(-∞,+∞)上單調(diào)遞增
∴函數(shù)f(x)的導函數(shù)f′(x)=1+a•cosx≥0在(-∞,+∞)上恒成立,
令cosx=t,t∈[-1,1],
問題轉(zhuǎn)化為g(t)=at+1≥0在t∈[-1,1]上恒成立,
即g(-1)≥0,g(1)≥0成立,所以-1≤t≤1.
故答案為:[-1,1].

點評 本題考查了利用函數(shù)單調(diào)性求參數(shù)范圍,同時也考查了恒成立中求參數(shù)的基本方法.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

1.橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1與橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{9}$=1具有相同的( 。
A.短軸長B.長軸長C.離心率D.對稱軸

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.已知f(x)=cos($\frac{x}{2}$-$\frac{π}{4}$),若f(α)=$\frac{1}{3}$,則sinα=-$\frac{7}{9}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知集合M={x|x2-3x-18≤0},N={x|1-a≤x≤2a+1}.
(1)若a=3,求M∩N和∁RN;
(2)若M⊆N,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.拋物線x2=2py(p>0)的準線方程為y=-$\frac{1}{2}$,則拋物線方程為x2=2y.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.函數(shù)f(x)=log3(x2+2x-8)的定義域為A,函數(shù)g(x)=x2+(m+1)x+m.
(1)若m=-4時,g(x)≤0的解集為B,求A∩B;
(2)若存在$x∈[0,\frac{1}{2}]$使得不等式g(x)≤-1成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.過點(1,-3)且平行于直線x-2y+3=0的直線方程為( 。
A.x-2y-7=0B.2x+y+1=0C.x-2y+7=0D.2x+y-1=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.定義在R上的函數(shù)f(x)滿足f(x+6)=f(x).當x∈[-3,-1)時,f(x)=-(x+2)2,當x∈[-1,3)時,f(x)=x,則f(1)+f(2)+f(3)+…+f(2017)的值為(  )
A.336B.337C.1676D.2017

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.設(shè)U=R,集合A={x|-2<x<1},B={x|-1<x≤4},則如圖中陰影部分表示的集合為{x|x≤-2,或-1<x<1,或x>4}.

查看答案和解析>>

同步練習冊答案