【題目】執(zhí)行如圖所示的程序框圖,輸出z的值是

【答案】21
【解析】解:模擬程序的運(yùn)行,可得

x=0,y=1,z=2

滿足條件z≤20,執(zhí)行循環(huán)體,x=1,y=2,z=3

滿足條件z≤20,執(zhí)行循環(huán)體,x=2,y=3,z=5

滿足條件z≤20,執(zhí)行循環(huán)體,x=3,y=5,z=8

滿足條件z≤20,執(zhí)行循環(huán)體,x=5,y=8,z=13

滿足條件z≤20,執(zhí)行循環(huán)體,x=8,y=13,z=21

不滿足條件z≤20,退出循環(huán),輸出z的值為21.

所以答案是:21.

【考點(diǎn)精析】利用程序框圖對(duì)題目進(jìn)行判斷即可得到答案,需要熟知程序框圖又稱流程圖,是一種用規(guī)定的圖形、指向線及文字說明來準(zhǔn)確、直觀地表示算法的圖形;一個(gè)程序框圖包括以下幾部分:表示相應(yīng)操作的程序框;帶箭頭的流程線;程序框外必要文字說明.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】祖暅(公元前5~6世紀(jì))是我國齊梁時(shí)代的數(shù)學(xué)家,是祖沖之的兒子.他提出了一條原理:“冪勢(shì)既同,則積不容異.”這里的“冪”指水平截面的面積,“勢(shì)”指高.這句話的意思是:兩個(gè)等高的幾何體若在所有等高處的水平截面的面積相等,則這兩個(gè)幾何體體積相等.設(shè)由橢圓 =1(a>b>0)所圍成的平面圖形繞y軸旋轉(zhuǎn)一周后,得一橄欖狀的幾何體(如圖)(稱為橢球體),課本中介紹了應(yīng)用祖暅原理求球體體積公式的做法,請(qǐng)類比此法,求出橢球體體積,其體積等于

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2+ax﹣lnx(a∈R,a為常數(shù))
(1)當(dāng)a=﹣1時(shí),若方程f(x)= 有實(shí)根,求b的最小值;
(2)設(shè)F(x)=f(x)ex , 若F(x)在區(qū)間(0,1]上是單調(diào)函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 ,圓 的圓心在橢圓上,點(diǎn)到橢圓的右焦點(diǎn)的距離為.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)過點(diǎn)作互相垂直的兩條直線,且交橢圓兩點(diǎn),直線交圓, 兩點(diǎn),且的中點(diǎn),求面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知2cosC(acosB+bcosA)=c.
(Ⅰ)求C;
(Ⅱ)若c= ,△ABC的面積為 ,求△ABC的周長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高中組織數(shù)學(xué)知識(shí)競賽,采取答題闖關(guān)的形式,分兩種題型,每種題型設(shè)兩關(guān).“數(shù)學(xué)文化”題答對(duì)一道得5分,“數(shù)學(xué)應(yīng)用”題答對(duì)一道得10分,答對(duì)一道題即可進(jìn)入下一關(guān),否則終止比賽.有甲、乙、丙三人前來參賽,設(shè)三人答對(duì)每道題的概率分別是 、 、 ,三人答題互不影響.甲、乙選擇“數(shù)學(xué)文化”題,丙選擇“數(shù)學(xué)應(yīng)用”題.
(Ⅰ)求乙、丙兩人所得分?jǐn)?shù)相等的概率;
(Ⅱ)設(shè)甲、丙兩人所得分?jǐn)?shù)之和為隨機(jī)變量X,求X的分布列與期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)的定義域?yàn)镽,f(﹣2)=2021,對(duì)任意x∈(﹣∞,+∞),都有f'(x)<2x成立,則不等式f(x)>x2+2017的解集為(
A.(﹣2,+∞)
B.(﹣2,2)
C.(﹣∞,﹣2)
D.(﹣∞,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題中正確命題的個(gè)數(shù)是 ①對(duì)于命題p:x∈R,使得x2+x+1<0,則p:x∈R,均有x2+x+1>0;
②命題“已知x,y∈R,若x+y≠3,則x≠2或y≠1”是真命題;
③設(shè)ξ~B(n,p),已知Eξ=3,Dξ= ,則n與p值分別為12,
④m=3是直線(m+3)x+my﹣2=0與直線mx﹣6y+5=0互相垂直的充要條件.(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線E的焦點(diǎn)為F,過點(diǎn)F的直線lE交于A,C兩點(diǎn)

(1)分別過AC兩點(diǎn)作拋物線E的切線,求證:拋物線EA、C兩點(diǎn)處的切線互相垂直;

(2)過點(diǎn)F作直線l的垂線與拋物線E交于BD兩點(diǎn),求四邊形ABCD的面積的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案