【題目】設(shè)數(shù)列,對任意都有,(其中k、b、p是常數(shù)).
(1)當,,時,求;
(2)當,,時,若,,求數(shù)列的通項公式;
(3)若數(shù)列中任意(不同)兩項之和仍是該數(shù)列中的一項,則稱該數(shù)列是“封閉數(shù)列”.當,,時,設(shè)是數(shù)列的前n項和,,試問:是否存在這樣的“封閉數(shù)列”,使得對任意,都有,且.若存在,求數(shù)列的首項的所有取值;若不存在,說明理由.
【答案】(1);(2);(3)見解析.
【解析】
(1)當,,時,,再寫一式,兩式相減,可得數(shù)列是以首項為1,公比為3的等比數(shù)列,從而可求;
(2)當,,時,,再寫一式,兩式相減,可得數(shù)列是等差數(shù)列,從而可求數(shù)列的通項公式;
(3)確定數(shù)列的通項,利用是“封閉數(shù)列”,得是偶數(shù),從而可得,再利用,驗證,可求數(shù)列的首項的所有取值.
(1)當,,時,,①
用去代n得,,②
②①得,,,
在①中令得,,則,∴,
∴數(shù)列是以首項為1,公比為3的等比數(shù)列,
∴.
(2)當,,時,,③
用去代n得,,④
④③得,,⑤
用去代n得,,⑥
⑥⑤得,,即,
∴數(shù)列是等差數(shù)列.
∵,,∴公差,∴.
(3)由(2)知數(shù)列是等差數(shù)列,∵,∴.
又是“封閉數(shù)列”,得:對任意m,,必存在使,
得,故是偶數(shù),
又由已知,,故.
一方面,當時,,對任意,都有.
另一方面,當時,,,則,
取,則,不合題意.
當時,,,則,
當時,,,,
又,
∴或或或.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),其中.
(1)若,求曲線在處的切線方程;
(2)設(shè)函數(shù)若至少存在一個,使得成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知,函數(shù)
(1)討論函數(shù)的單調(diào)性;
(2)若是的極值點,且曲線在兩點, 處的切線互相平行,這兩條切線在y軸上的截距分別為、,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知,,,是各項均為正數(shù)的等差數(shù)列,其公差大于零.若線段,,,的長分別為,,,,則( ).
A.對任意的,均存在以,,為三邊的三角形
B.對任意的,均不存在以,,為三邊的三角形
C.對任意的,均存在以,,為三邊的三角形
D.對任意的,均不存在以,,為三邊的三角形
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)在上的單調(diào)遞增區(qū)間;
(2)將函數(shù)的圖象向左平移個單位長度,再將圖象上所有點的橫坐標伸長到原來的倍(縱坐標不變),得到函數(shù)的圖象.求證:存在無窮多個互不相同的整數(shù),使得.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左、右焦點分別為,,直線l與橢圓C交于P,Q兩點,且點M滿足.
(1)若點,求直線的方程;
(2)若直線l過點且不與x軸重合,過點M作垂直于l的直線與y軸交于點,求實數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(為常數(shù),且),且數(shù)列是首項為,公差為的等差數(shù)列.
(1)求證:數(shù)列是等比數(shù)列;
(2)若,當時,求數(shù)列的前項和的最小值;
(3)若,問是否存在實數(shù),使得是遞增數(shù)列?若存在,求出的范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】現(xiàn)有六名百米運動員參加比賽,甲、乙、丙、丁四名同學猜測誰跑了第一名.甲猜不是就是;乙猜不是;丙猜不是中任一個;丁猜是中之一,若四名同學中只有一名同學猜對,則猜對的是( )
A.甲B.乙C.丙D.丁
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com