【題目】設(shè)數(shù)列{an}的前n項和為Sn=2n2,{bn}為等比數(shù)列,且a1b1,b2(a2a1)=b1

(1)求數(shù)列{an}和{bn}的通項公式;

(2)設(shè)cn,求數(shù)列{cn}的前n項和Tn

【答案】22. (1) 當(dāng)n1時,a1S12

當(dāng)n≥2時,anSnSn12n22(n1)24n2,

a1=2滿足上式,

an4n2. ………………………………………3

設(shè){bn}的公比為q,由b2(a2a1)b1知,b12,b2,所以q,

bnb1qn-1,即bn. …………………………6

(2)cn(2n1) 4n-1, …………………………8

Tn13×415×42(2n1)4n-1

4Tn1×413×425×42(2n3)4n-1(2n1)4n②……………10

①-②得:-3Tn= 1+2(4142434n-1)-(2n1)4n

=-(2n1)4n

=

Tn [(6n5)4n5].

【解析】略

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校隨機抽取部分新生調(diào)查其上學(xué)路上所需時間(單位:分鐘),并將所得數(shù)據(jù)繪制成頻率分布直方圖(如圖),其中,上學(xué)路上所需時間的范圍是,樣本數(shù)據(jù)分組為, , ,

(1)求直方圖中的值;

(2)如果上學(xué)路上所需時間不少于40分鐘的學(xué)生可申請在學(xué)校住宿,請估計學(xué)校1000名新生中有多少名學(xué)生可以申請住宿.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=ex-ax-2.

(1)求f(x)的單調(diào)區(qū)間;

(2)若a=1,k為整數(shù),且當(dāng)x>0時,(x-k)f(x)+x+1>0,求k的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了參加師大附中第30屆田徑運動會的開幕式,高三年級某6個班聯(lián)合到集市購買了6根竹竿,作為班期的旗桿之用,它們的長度分別為3.8,4.3,3.6,4.5,4.0,4.1單位:米

1若從中隨機抽取兩根竹竿,求長度之差不超過0.5米的概率;

2若長度不小于4米的竹竿價格為每根10元,長度小于4米的竹竿價格為每根從這6根竹竿中隨機抽取兩根,若期望這兩根竹竿的價格之和為18元,求的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的左、右焦點分別為, ,點在橢圓上.

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)是否存在斜率為2的直線,使得當(dāng)直線與橢圓有兩個不同交點時,能在直線上找到一點,在橢圓上找到一點,滿足?若存在,求出直線的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中為常數(shù),為自然對數(shù)的底數(shù).

1)當(dāng)時,求的最大值;

2)若在區(qū)間上的最大值為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】本題滿分14本題共有2個小題,第1小題滿分6分,第2小題滿分8

沙漏是古代的一種時裝置,它由兩個形狀完全相同的容器和一個狹窄的連接管道組成,開始時細(xì)沙全部在上部容器中,細(xì)通過連接管道全部到下部容器所需要的時間稱為該沙漏的一個沙時。如圖,某沙漏由上下兩個圓錐組成,圓錐的底面直徑和高均為8cm,細(xì)沙全部在上部時,高度為圓錐高度的細(xì)管長忽略不

1如果該沙漏每秒鐘漏下0.02cm3的沙,則該沙漏的一個沙時為多少秒精確1秒?

2細(xì)全部漏入下部恰好堆成一蓋沙漏底的圓錐形沙,求此錐形高度精確0.1cm

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線).

(1)證明:直線過定點;

(2)若直線不經(jīng)過第四象限,求的取值范圍;

(3)若直線軸負(fù)半軸于,交軸正半軸于,△的面積為為坐標(biāo)原點),求的最小值,并求此時直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前項和為,且.

(1)求數(shù)列的通項公式,并寫出推理過程;

(2)令,,試比較的大小,并給出你的證明.

查看答案和解析>>

同步練習(xí)冊答案