【題目】設(shè)數(shù)列{an}的前n項和為Sn=2n2,{bn}為等比數(shù)列,且a1=b1,b2(a2-a1)=b1.
(1)求數(shù)列{an}和{bn}的通項公式;
(2)設(shè)cn=,求數(shù)列{cn}的前n項和Tn.
【答案】22. (1) 當(dāng)n=1時,a1=S1=2
當(dāng)n≥2時,an=Sn-Sn-1=2n2-2(n-1)2=4n-2,
又a1=2滿足上式,
∴an=4n-2. ………………………………………3分
設(shè){bn}的公比為q,由b2(a2-a1)=b1知,b1=2,b2=,所以q=,
∴bn=b1qn-1=2×,即bn=. …………………………6分
(2)∵cn===(2n-1) 4n-1, …………………………8分
∴Tn=1+3×41+5×42+…+(2n-1)4n-1①
又4Tn=1×41+3×42+5×42+…+(2n-3)4n-1+(2n-1)4n②……………10分
①-②得:-3Tn= 1+2(41+42+43+…+4n-1)-(2n-1)4n
=-(2n-1)4n
=
∴Tn= [(6n-5)4n+5].
【解析】略
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校隨機抽取部分新生調(diào)查其上學(xué)路上所需時間(單位:分鐘),并將所得數(shù)據(jù)繪制成頻率分布直方圖(如圖),其中,上學(xué)路上所需時間的范圍是,樣本數(shù)據(jù)分組為, , , , .
(1)求直方圖中的值;
(2)如果上學(xué)路上所需時間不少于40分鐘的學(xué)生可申請在學(xué)校住宿,請估計學(xué)校1000名新生中有多少名學(xué)生可以申請住宿.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=ex-ax-2.
(1)求f(x)的單調(diào)區(qū)間;
(2)若a=1,k為整數(shù),且當(dāng)x>0時,(x-k)f′(x)+x+1>0,求k的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了參加師大附中第30屆田徑運動會的開幕式,高三年級某6個班聯(lián)合到集市購買了6根竹竿,作為班期的旗桿之用,它們的長度分別為3.8,4.3,3.6,4.5,4.0,4.1(單位:米).
(1)若從中隨機抽取兩根竹竿,求長度之差不超過0.5米的概率;
(2)若長度不小于4米的竹竿價格為每根10元,長度小于4米的竹竿價格為每根元.從這6根竹竿中隨機抽取兩根,若期望這兩根竹竿的價格之和為18元,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: 的左、右焦點分別為, ,點在橢圓上.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)是否存在斜率為2的直線,使得當(dāng)直線與橢圓有兩個不同交點、時,能在直線上找到一點,在橢圓上找到一點,滿足?若存在,求出直線的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中為常數(shù),為自然對數(shù)的底數(shù).
(1)當(dāng)時,求的最大值;
(2)若在區(qū)間上的最大值為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分14分)本題共有2個小題,第1小題滿分6分,第2小題滿分8分
沙漏是古代的一種計時裝置,它由兩個形狀完全相同的容器和一個狹窄的連接管道組成,開始時細(xì)沙全部在上部容器中,細(xì)沙通過連接管道全部流到下部容器所需要的時間稱為該沙漏的一個沙時。如圖,某沙漏由上下兩個圓錐組成,圓錐的底面直徑和高均為8cm,細(xì)沙全部在上部時,其高度為圓錐高度的(細(xì)管長度忽略不計).
(1)如果該沙漏每秒鐘漏下0.02cm3的沙,則該沙漏的一個沙時為多少秒(精確到1秒)?
(2)細(xì)沙全部漏入下部后,恰好堆成個一蓋住沙漏底部的圓錐形沙堆,求此錐形沙堆的高度(精確到0.1cm).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線().
(1)證明:直線過定點;
(2)若直線不經(jīng)過第四象限,求的取值范圍;
(3)若直線軸負(fù)半軸于,交軸正半軸于,△的面積為(為坐標(biāo)原點),求的最小值,并求此時直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前項和為,且.
(1)求數(shù)列的通項公式,并寫出推理過程;
(2)令,,試比較與的大小,并給出你的證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com