設(shè)直線的方程為

(1)若在兩坐標(biāo)軸上的截距相等,求的方程;

(2)若不經(jīng)過第二象限,求實(shí)數(shù)a的取值范圍。

解:(1)L:(a+1)x+y-a=0,當(dāng)x=0時(shí),y=a-2, 當(dāng)y=0時(shí),x=,

  由題意得:a-2=,∴a2-2a=0,∴a=0或a=2,

 ∴直線L的方程為:x+y+2=0或3x+y=0; 

(2)L不經(jīng)過第二象限∴解得:a≤-1.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)直線的方程為,根據(jù)下列條件分別確定實(shí)數(shù)的值.

(1)軸上的截距為;

(2)斜率為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013年浙江省臺(tái)州六校高二上學(xué)期期中聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:填空題

設(shè)直線的方程為

 (1)若直線在兩坐標(biāo)軸上的截距相等,則直線的方程是          ;

 (2)若直線不經(jīng)過第二象限,則實(shí)數(shù)的取值范圍是     

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆黑龍江省高二上學(xué)期期中文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿10分) 設(shè)直線的方程為

(1) 若在兩坐標(biāo)軸上的截距相等,求的方程;

(2) 若不經(jīng)過第二象限,求實(shí)數(shù)的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012年浙江省高二第一學(xué)期期中考試?yán)砜茢?shù)學(xué) 題型:解答題

(本小題9分)設(shè)直線的方程為(+1)x+y+2-=0 (∈R).

(1)若在兩坐標(biāo)軸上的截距相等,求的方程;

(2)若不經(jīng)過第二象限,求實(shí)數(shù)的取值范圍.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案