20.某奶茶店為了解白天平均氣溫與某種飲料銷量之間的關系進行分析研究,記錄了2月21日至2月25日
的白天平均氣溫x(℃)與該奶茶店的這種飲料銷量y(杯),得到如表數(shù)據(jù):
平均氣溫x(℃)91112108
銷量y(杯)2326302521
(Ⅰ)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關于x的線性回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$;
(Ⅱ) 試根據(jù)(1)求出的線性回歸方程,預測平均氣溫約為20℃時該奶茶店的這種飲料銷量.
(參考:$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$•$\overline{x}$;9×23+11×26+12×30+10×25+8×21=1271,92+112+122+102+82=510)

分析 (Ⅰ)根據(jù)所給的數(shù)據(jù),先做出x,y的平均數(shù),即做出本組數(shù)據(jù)的樣本中心點,根據(jù)最小二乘法求出線性回歸方程的系數(shù),寫出線性回歸方程.
(Ⅱ)利用線性回歸方程,x取20,即可預測平均氣溫約為20℃時該奶茶店的這種飲料銷量.

解答 解:(Ⅰ)$\overline{x}$=10,$\overline{y}$=25--------------(1分)
b=$\frac{1271-5×10×25}{510-5×100}$=2.1--------------(2分)
a=25-2.1×10=4--------------(4分)
y關于x的線性回歸方程$\widehat{y}$=2.1x+4--------------(8分)
(Ⅱ)當x=20時,y=42+4=46.
故預測平均氣溫約為20°C時該奶茶店的這種飲料銷量為46杯--------------(12分)

點評 本題考查線性回歸方程的求法,考查最小二乘法,考查估計驗算所求的方程是否是可靠的,是一個基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

10.已知某幾何體的三視圖(單位:cm)如圖所示,則該幾何體的體積是(  )
A.100cm3B.98cm3C.88cm3D.78cm3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率e=$\frac{1}{2}$,點P(0,$\sqrt{3}$)在橢圓上,A,B分別為橢圓的左右頂點,過點B作BD⊥x軸交AP的延長線于點D,F(xiàn)為橢圓的右焦點.
(1)求橢圓的方程及直線PF被橢圓截得的弦長|PM|;
(2)求證:以BD為直徑的圓與直徑PF相切.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.如圖所示,從圓O外一點M做圓O的割線MAB、MCD,AB是圓O的直徑,MA=$\sqrt{2}$,MC=$\sqrt{7}$-1,CD=2.
(1)求圓O的半徑;
(2)求∠CBD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.總體(x,y)的一組樣本數(shù)據(jù)為:
x1234
y3354
(1)若x,y線性相關,求回歸直線方程;
(2)當x=6時,估計y的值.
附:回歸直線方程$\hat y$=$\hat b$x+$\hat a$,其中$\hat a$=$\overline{y}$-$\hat b$$\overline{x}$,$\hat b$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{{\sum_{y=1}^{n}x}_{i}^{2}-n{\overline{x}}^{2}}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知函數(shù)f(x)=sinx-2x,且a=f(ln$\frac{3}{2}$),b=f(log2$\frac{1}{3}$),c=f(20.3),則( 。
A.c>a>bB.a>c>bC.a>b>cD.b>a>c

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.某小學對學生的記憶能力x與識圖能力y進行統(tǒng)計分析,得到如表數(shù)據(jù):
記憶能力x46810
識圖能力y3568
(1)試求y與x之間的回歸直線方程;
(2)當小明同學的記憶能力為14時,用回歸直線方程預測他的識圖能力的值.
參考公式:回歸直線的方程是$\widehat{y}$=$\widehat$x+$\widehat{a}$,其中$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{\sum_{i=1}^{n}{x}_{i}^{2}-n(\overline{x})^{2}}$,$\widehat{a}$=$\widehat{y}$-$\widehat$x.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知等差數(shù)列{an}中,Sn為前n項和,S4=6,S6=8,則S10=(  )
A.10B.12C.14D.16

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0)的部分圖象如圖所示,則f($\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$.π

查看答案和解析>>

同步練習冊答案