20.已知復(fù)數(shù)z=$\frac{{{{(1+{i})}^2}+3(1-{i})}}{{2+{i}}}$(i是虛數(shù)單位).
(Ⅰ)求復(fù)數(shù)z的模|z|;  
(Ⅱ)若z2+az+b=1+i(a,b∈R),求a,b的值.

分析 (1)利用復(fù)數(shù)的運(yùn)算法則、模的計(jì)算公式即可得出.
(2)利用復(fù)數(shù)的運(yùn)算法則、復(fù)數(shù)相等即可得出.

解答 解:(1)z=$\frac{{{{(1+{i})}^2}+3(1-{i})}}{{2+{i}}}$=$\frac{3-i}{2+i}$=$\frac{(3-i)(2-i)}{(2+i)(2-i)}$=$\frac{5-5i}{5}$=1-i.
∴|z|=$\sqrt{2}$.
(2)z2+az+b=(1-i)2+a(1-i)+b=a+b-(2+a)i=1+i,
∴$\left\{\begin{array}{l}{a+b=1}\\{2+a=-1}\end{array}\right.$,解得a=-3,b=4.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的運(yùn)算法則、模的計(jì)算公式、復(fù)數(shù)相等,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.下列各數(shù)中最小的是( 。
A.111111(2)B.222(5)C.1000(4)D.65

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知在△ABC中,a、b、c分別為∠A、∠B、∠C的對(duì)邊,且a=4,b+c=5.A=60°,則△ABC的面積為( 。
A.$\frac{\sqrt{3}}{4}$B.3$\sqrt{3}$C.$\frac{3\sqrt{3}}{4}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.中、美、俄等21國領(lǐng)導(dǎo)人合影留念,他們站成兩排,前排11人,后排10人,中國領(lǐng)導(dǎo)人站在第一排正中間位置,美俄兩國領(lǐng)導(dǎo)人站在與中國領(lǐng)導(dǎo)人相鄰的兩側(cè),如果對(duì)其他領(lǐng)導(dǎo)人所站的位置不做要求,那么不同的站法共有( 。
A.A1818B.A2020C.A32A183A1010D.A22A1818

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.直線l與橢圓$\frac{x^2}{4}$+y2=1相交于A?B兩點(diǎn),并且線段AB的中點(diǎn)為M(1,$\frac{1}{2}}$).
(1)求直線l的方程(用一般式表示);
(2)求弦長|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),對(duì)任意的x∈R都有3f′(x)>f(x)成立,則( 。
A.3f(3ln2)>2f(3ln3)B.3f(3ln2)與2f(3ln3)的大小不確定
C.3f(3ln2)=2f(3ln3)D.3f(3ln2)<2f(3ln3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知定義在實(shí)數(shù)集R上的函數(shù)f(x)滿足f(1)=2,且f(x)的導(dǎo)數(shù)f'(x)在R上恒有f'(x)<1(x∈R),則不等式f(x)>x+1的解集為( 。
A.(1,+∞)B.(-∞,-1)∪(1,+∞)C.(-1,1)D.(-∞,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.正四棱柱ABCD-A1B1C1D1底面邊長為2,高AA1=2$\sqrt{3}$,A,B,C,D在球O上,球O與A1B交于E,與D1C交于F,且AE垂直A1B,則球O的表面積為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.命題P的否定是:“對(duì)所有正數(shù)x,$\sqrt{x}$>x+1”,則命題P是存在正數(shù)x,$\sqrt{x}$≤x+1.

查看答案和解析>>

同步練習(xí)冊答案