6.復(fù)數(shù)(a-i)(1-i)(a∈R)的實(shí)部與虛部相等,則實(shí)數(shù)a=( 。
A.-1B.0C.1D.2

分析 利用復(fù)數(shù)的運(yùn)算法則、實(shí)部與虛部的定義即可得出.

解答 解:(a-i)(1-i)=a-1+(-1-a)(a∈R)的實(shí)部與虛部相等,
∴a-1=-1-a,解得a=1.
故選:C.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的運(yùn)算法則、實(shí)部與虛部的定義,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn)分別為F1、F2,N(0,-1)為橢圓的一個(gè)頂點(diǎn),且右焦點(diǎn)F2到雙曲線x2-y2=2漸近線的距離為$\sqrt{2}$.
(1)求橢圓C的方程;
(2)設(shè)直線l:y=kx+m(k≠0)與橢圓C交于A、B兩點(diǎn).
①若NA,NB為鄰邊的平行四邊形為菱形,求m的取值范圍;
②若直線l過(guò)定點(diǎn)P(1,1),且線段AB上存在點(diǎn)T,滿足$\frac{|AP|}{|AT|}$=$\frac{|PB|}{|TB|}$,證明:點(diǎn)T在定直線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.若數(shù)列{an}為等差數(shù)列,Sn為其前n項(xiàng)和,且a1=2a3-3,則S9=( 。
A.25B.27C.50D.54

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.正四面體ABCD中,M是棱AD的中點(diǎn),O是點(diǎn)A在底面BCD內(nèi)的射影,則異面直線BM與AO所成角的余弦值為( 。
A.$\frac{{\sqrt{2}}}{6}$B.$\frac{{\sqrt{2}}}{3}$C.$\frac{{\sqrt{2}}}{4}$D.$\frac{{\sqrt{2}}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知點(diǎn)P為一動(dòng)點(diǎn),點(diǎn)A的坐標(biāo)為(1,$\frac{3}{2}$),點(diǎn)B的坐標(biāo)為(1,-$\frac{3}{2}$).兩條不同的直線PA、PB與x軸交點(diǎn)的橫坐標(biāo)分別為m、n且滿足mn=4,記動(dòng)點(diǎn)P的軌跡及A,B兩點(diǎn)組成曲線C,設(shè)過(guò)點(diǎn)(0,1)且斜率為k的直線l與曲線C交于不同的兩點(diǎn)M,N,線段MN的中點(diǎn)為E點(diǎn),直線OE與曲線C交于Q、R兩點(diǎn).
(1)求曲線C的方程;
(2)若|EM|•|EN|=λ|EQ|•|ER|,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.若復(fù)數(shù)z=$\frac{1-3i}{1+i}$(i為虛數(shù)單位),則|z+1|=( 。
A.3B.2C.$\sqrt{2}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.在△ABC中,$|{\overrightarrow{AB}+\overrightarrow{AC}}|=\sqrt{3}|{\overrightarrow{AB}-\overrightarrow{AC}}|$,$|{\overrightarrow{AB}}|=|{\overrightarrow{AC}}|=3$,則$\overrightarrow{CB}•\overrightarrow{CA}$的值為( 。
A.3B.-3C.$-\frac{9}{2}$D.$\frac{9}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.如圖,在四棱柱ABCD-A1B1C1D1中,底面ABCD是等腰梯形,∠ADC=120°,AB=2CD=2,平面D1DCC1垂直平面ABCD,D1C⊥AB,M是線段AB的中點(diǎn).
(Ⅰ)求證:D1M∥面B1BCC1;
(Ⅱ)若DD1=2,求平面C1D1M和平面ABCD所成的銳角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.過(guò)點(diǎn)P(1,1)且傾斜角為45°的直線被圓(x-2)2+(y-1)2=2所截的弦長(zhǎng)是(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$\sqrt{6}$D.$\sqrt{7}$

查看答案和解析>>

同步練習(xí)冊(cè)答案