直線與兩直線分別交于,兩點(diǎn),線段的中點(diǎn)是則點(diǎn)的坐標(biāo)為( )
A. B. C. D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2014-2015學(xué)年湖北省高二上學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分13分)已知關(guān)于的二次函數(shù)
(Ⅰ)設(shè)集合和,分別從集合,中隨機(jī)取一個(gè)數(shù)作為和,求函數(shù)在區(qū)間上是增函數(shù)的概率.
(Ⅱ)設(shè)點(diǎn)是區(qū)域內(nèi)的隨機(jī)點(diǎn),求函數(shù)在區(qū)間上是增函數(shù)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014-2015學(xué)年北京市高二上學(xué)期期中練習(xí)文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題12分)如圖,已知直角梯形中,且,又分別為的中點(diǎn),將△沿折疊,使得.
(Ⅰ)求證:;
(Ⅱ)求證:;
(Ⅲ)在線段上找一點(diǎn),使得,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014-2015學(xué)年北京市高二上學(xué)期期中練習(xí)理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題10分)已知圓C:x2+(y-3)2=4,一動(dòng)直線l過(guò)A(-1,0)與圓C相交于P,Q兩點(diǎn),M是PQ的中點(diǎn),l與直線m:x+3y+6=0相交于點(diǎn)N.
(Ⅰ)求證:當(dāng)l與m垂直時(shí),l經(jīng)過(guò)圓心C;
(Ⅱ)當(dāng)=2時(shí),求直線l的方程;
(Ⅲ)請(qǐng)問(wèn):是否與直線l的傾斜角有關(guān),若無(wú)關(guān),請(qǐng)求出其值;若有關(guān),請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014-2015學(xué)年北京市高二上學(xué)期期中練習(xí)理科數(shù)學(xué)試卷(解析版) 題型:填空題
如圖,直三棱柱的側(cè)棱長(zhǎng)和底面邊長(zhǎng)均為2,其正(主)視圖是邊長(zhǎng)為2的正方形,則此三棱柱側(cè)(左)視圖的面積為_(kāi)_________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014-2015學(xué)年北京市高二上學(xué)期期中練習(xí)理科數(shù)學(xué)試卷(解析版) 題型:選擇題
已知圓的方程為,則圓的半徑為( )
A. 3 B. 9 C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014-2015學(xué)年內(nèi)蒙古一機(jī)一中高一上學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:填空題
當(dāng)時(shí),不等式恒成立,則的取值范圍是
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014-2015學(xué)年江蘇省高二上學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分16分)設(shè)為正實(shí)數(shù),.
(1)試比較的大;
(2)若,試證明:以為三邊長(zhǎng)一定能構(gòu)成三角形;
(3)若對(duì)任意的正實(shí)數(shù),不等式恒成立,試求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014-2015學(xué)年廣東省湛江市高一上學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:解答題
(滿分14分)已知函數(shù),(),若同時(shí)滿足以下條件:
①在D上單調(diào)遞減或單調(diào)遞增;
②存在區(qū)間[]D,使在[]上的值域是[],那么稱()為閉函數(shù).
(1)求閉函數(shù)符合條件②的區(qū)間[];
(2)判斷函數(shù)是不是閉函數(shù)?若是請(qǐng)找出區(qū)間[];若不是請(qǐng)說(shuō)明理由;
(3)若是閉函數(shù),求實(shí)數(shù)的取值范圍.
(注:本題求解中涉及的函數(shù)單調(diào)性不用證明,直接指出是增還是減函數(shù)即可)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com