15.橢圓x2+$\frac{y^2}{b^2}$=1(|b|<1)的左焦點(diǎn)為F,A為上頂點(diǎn),B為長(zhǎng)軸上任意一點(diǎn),且B在原點(diǎn)O的右側(cè),若△FAB的外接圓圓心為P(m,n),且m+n>0,橢圓離心率的范圍為( 。
A.$({0,\frac{{\sqrt{2}}}{2}})$B.$({0,\frac{1}{2}})$C.$({\frac{1}{2},1})$D.$({\frac{{\sqrt{2}}}{2},1})$

分析 分別求出線段FB與AB的垂直平分線方程,聯(lián)立解出圓心坐標(biāo)P,利用m+n>0,與離心率計(jì)算公式即可得出.

解答 解:如圖所示,B是右頂點(diǎn)
線段FB的垂直平分線為:x=$\frac{1-\sqrt{1-^{2}}}{2}$.
線段AB的中點(diǎn)($\frac{1}{2}$,$\frac{2}$).
∵kAB=-b.
∴線段AB的垂直平分線的斜率k=$\frac{1}$.
∴線段AB的垂直平分線方程為:y-$\frac{2}$=$\frac{1}$(x-$\frac{1}{2}$),
把x=$\frac{1-\sqrt{1-^{2}}}{2}$=p代入上述方程可得:y=$\frac{^{2}-\sqrt{1-^{2}}}{2b}$=n.
∵m+n>0,
∴$\frac{1-\sqrt{1-^{2}}}{2}$+$\frac{1-\sqrt{1-^{2}}}{2}$>0.
化為:b>$\sqrt{1-^{2}}$,又0<b<1,
解得$\frac{\sqrt{2}}{2}$<b<1.
∴e=$\frac{c}{a}$=c=$\sqrt{1-^{2}}$∈(0,$\frac{\sqrt{2}}{2}$).
B為長(zhǎng)軸上任意一點(diǎn),且B在原點(diǎn)O的右側(cè),結(jié)論同樣成立,
故選:A.

點(diǎn)評(píng) 本題考查了橢圓的標(biāo)準(zhǔn)方程及其性質(zhì)、線段的垂直平分線方程、三角形外心性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,四邊形ABCD為矩形,四邊形BCEF為直角梯形,BF∥CE,BF⊥BC,CE=2BF=2AB=4,∠ABF=DCE=120°,G是AF中點(diǎn).
(1)求證:AF∥平面DCE;
(2)求證:BG⊥DF;
(3)若二面角E-DF-A的大小為150°,求線段DF的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知f(x)=ax-$\frac{a}{x}$-10lnx,h(x)=-x2+(m-2)x+6.
(Ⅰ)若函數(shù)f(x)在其定義域上是增函數(shù),求實(shí)數(shù)a的取值范圍;
(Ⅱ)當(dāng)a=4時(shí),對(duì)于任意x1,x2∈(0,1),均有h(x1)≥f(x2)恒成立,試求參數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)y=f(x)的圖象如圖所示,求:
(1)函數(shù)y=f(x)的定義域;
(2)函數(shù)y=f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若非零向量$\overrightarrow{a}$,$\overrightarrow$滿足($\overrightarrow{a}$-$\sqrt{2}$$\overrightarrow$)⊥$\overrightarrow{a}$,則$\frac{|\overrightarrow{a}|}{|\overrightarrow|}$的最大值為( 。
A.$\frac{1}{2}$B.1C.$\frac{\sqrt{3}}{2}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)f(x)=log2(x2-ax+1+a)在區(qū)間(-∞,2)上為減函數(shù),則a的取值范圍為( 。
A.[4,+∞)B.[4,5]C.(4,5)D.[4,5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.幾何體的俯視圖為一邊長(zhǎng)為2的正三角形,則該幾何體的各個(gè)面中,面積最大的面的面積為(  )
A.3B.$\sqrt{6}$C.2D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.在△ABC中,角A、B、C所對(duì)的邊分別為a、b、c,已知a=2,c=3,cosB=$\frac{1}{4}$,則sinC的值為$\frac{3\sqrt{6}}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知拋物線C1:y2=2px(p>0)經(jīng)過圓C2:x2+y2-2x-4$\sqrt{2}$y-16=0的圓心,過C1的焦點(diǎn)的直線l與拋物線相交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),則$\overrightarrow{OA}$•$\overrightarrow{OB}$=-12.

查看答案和解析>>

同步練習(xí)冊(cè)答案