9.已知圓臺的下底面周長是上底面周長的3倍,母線長為3,且圓臺的側(cè)面積為12π,則該圓臺的體積為( 。
A.$\frac{{13\sqrt{5}}}{3}π$B.13πC.$\frac{{13\sqrt{3}}}{3}π$D.$13\sqrt{5}π$

分析 依題意設(shè)設(shè)圓臺上、底面半徑分別為r、3r,由 π(r+3r)•3=12π,解得:r=1,從而求出該圓臺的高,由此能示出該圓臺的體積.

解答 解:依題意設(shè)設(shè)圓臺上、底面半徑分別為r、3r,
∵圓臺的側(cè)面積為12π,
∴π(r+3r)•3=12π,解得:r=1,
∴該圓臺的高h=$\sqrt{{3}^{2}-(3-1)^{2}}$=$\sqrt{5}$,
∴該圓臺的體積為V=$\frac{1}{3}$π×$\sqrt{5}$×(32+3×1+12)=$\frac{13\sqrt{5}}{3}π$.
故選:A.

點評 本題考查圓臺的體積的求法,是中檔題,解題時要認真審題,注意圓臺的性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知函數(shù)f(x)=3x+x,g(x)=log3x+x,h(x)=log3x-3的零點依次為a,b,c,則( 。
A.c<b<aB.a<b<cC.c<a<bD.b<a<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.函數(shù)f(x)=ax-1+1的圖象恒過點(1,2);若對數(shù)函數(shù)g(x)=logbx的圖象經(jīng)過點(3,4),則b=$\root{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知函數(shù)f(x)=log2(x2-2x-3),則使f(x)為減函數(shù)的區(qū)間是( 。
A.(3,6)B.(-1,0)C.(1,2)D.(-3,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.“方程$\frac{x^2}{2-n}$+$\frac{y^2}{n+1}$=1表示焦點在x軸的橢圓”是“-1<n<2”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.橢圓與雙曲線有相同的焦點F1(-c,0),F(xiàn)2(c,0),橢圓的一個短軸端點為B,直線F1B與雙曲線的一條漸近線平行,若橢圓與雙曲線的離心率分別為e1,e2,則3e12+e22的最小值為$2\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知二次函數(shù)f(x)=mx2+(m+2)mx+2為偶函數(shù),求實數(shù)m的值=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知樣本:4、2、1、0、-2,則該樣本的標(biāo)準(zhǔn)差為( 。
A.$\sqrt{2}$B.2C.4D.$2\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=x2-2x+k,且log2f(a)=2,f(log2a)=k,a>0,且a≠1.
(1)求a,k的值;
(2)當(dāng)x為何值時,f(logax)有最小值?求出該最小值.

查看答案和解析>>

同步練習(xí)冊答案