【題目】某中學(xué)采取分層抽樣的方法從應(yīng)屆高三學(xué)生中按照性別抽取20名學(xué)生,其中8名女生中有3名報考理科,男生中有2名報考文科.

(1)根據(jù)以上信息,寫出列聯(lián)表;

(2)用假設(shè)檢驗的方法分析有多大的把握認為該中學(xué)的高三學(xué)生選報文理科與性別有關(guān)?

參考公式:

pK2≥k0

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.07

2.71

3.84

5.02

6.64

7.88

10.83

【答案】(1)列聯(lián)表見解析;(2).

【解析】

試題(1)根據(jù)題意分別列出按報考文科、理科的男女生人數(shù),即得列聯(lián)表;(2)假設(shè):報考文理科與性別無關(guān),根列聯(lián)表和相關(guān)系數(shù)的公式得到,對比參考值表可知犯錯的概率不超過,所以有把握認為該中學(xué)的學(xué)生選報文理科與性別有關(guān).

試題解析:(1)

男生

女生

總計

報考理科

10

3

13

報考文科

2

5

7

總計

12

8

20

(2)假設(shè):報考文理科與性別無關(guān),則,

因為,所以我們有把握認為該中學(xué)的高三學(xué)生選報文理科與性別有關(guān).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若無窮數(shù)列滿足:,當(dāng)',時, (其中表示,,…,中的最大項),有以下結(jié)論:

若數(shù)列是常數(shù)列,則;

若數(shù)列是公差的等差數(shù)列,則;

若數(shù)列是公比為的等比數(shù)列,則

若存在正整數(shù),對任意,都有,則,是數(shù)列的最大項.

其中正確結(jié)論的序號是____(寫出所有正確結(jié)論的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,平面平面,,,分別為的中點.

(Ⅰ)證明:平面平面;

(Ⅱ)若,求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地建一座橋,兩端的橋墩已建好,這兩墩相距m米,余下工程只需建兩端橋墩之間的橋面和橋墩.經(jīng)測算,一個橋墩的工程費用為256萬元;距離為x米的相鄰兩墩之間的橋面工程費用為(2+)x萬元.假設(shè)橋墩等距離分布,所有橋墩都視為點,且不考慮其他因素,記余下工程的費用為y萬元.

(1)試寫出y關(guān)于x的函數(shù)關(guān)系式;

(2)當(dāng)m=640米時,需新建多少個橋墩才能使y最小?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列滿足:(其中為非零實常數(shù)).

1)設(shè),求證:數(shù)列是等差數(shù)列,并求出通項公式;

2)設(shè),記,求使得不等式成立的最小正整數(shù)

3)若,對于任意的正整數(shù),均有,當(dāng)、依次成等比數(shù)列時,求、、的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直角梯形的下底與等腰直角三角形的斜邊重合,(如圖(1)所示),將此圖形沿折疊成直二面角,連接,,得到四棱錐(如圖(2)所示).

1)線段上是否存在點,使平面?若存在,求出;若不存在,說明理由;

2)在(1)的條件下,求平面與平面的夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖已知橢圓的焦點在軸上,其離心率為,點在橢圓上.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)橢圓的弦,的中點分別為,,若平行于,直線與橢圓相切,且斜率為1,則斜率之和是否為定值?若是定值,請求出該定值;若不是定值請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于直線與拋物線,若有且只有一個公共點且的對稱軸不平行(或重合),則稱相切,直線叫做拋物線的切線.

(1)已知是拋物線上一點,求證:過點的切線的斜率;

(2)已知軸下方一點,過引拋物線的切線,切點分別為,.求證:成等差數(shù)列;

(3)如圖所示,、是拋物線上異于坐標(biāo)原點的兩個不同的點,過點的切線分別是,直線交于點,且與軸分別交于點.設(shè)為方程的兩個實根,表示實數(shù)中較大的值.求證:“點在線段上”的充要條件是“”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】語文成績服從正態(tài)分布,數(shù)學(xué)成績的頻率分布直方圖如圖:

1)如果成績大于135的為特別優(yōu)秀,這500名學(xué)生中本次考試語文、數(shù)學(xué)特別優(yōu)秀的大約各多少人?

2)如果語文和數(shù)學(xué)兩科都特別優(yōu)秀的共有6人,從(1)中的這些同學(xué)中隨機抽取3人,設(shè)三人中兩科都特別優(yōu)秀的有人,求的分布列和數(shù)學(xué)期望.

3)根據(jù)以上數(shù)據(jù),是否有99%的把握認為語文特別優(yōu)秀的同學(xué),數(shù)學(xué)也特別優(yōu)秀.

①若,則.

0.050

0.040

0.010

0.005

0.001

0.455

0.708

6.635

7.879

10.828

查看答案和解析>>

同步練習(xí)冊答案