一個袋中裝有大小相同的球10個,其中紅球8個,黑球2個,現(xiàn)從袋中有放回地取球,每次隨機取1個. 求:
(1)連續(xù)取兩次都是紅球的概率;
(2)如果取出黑球,則取球終止,否則繼續(xù)取球,直到取出黑球,但取球次數(shù)最多不超過4次,求取到黑球的概率.
分析:(1)第一次和第二次取到紅球的概率都是
4
5
,由此能求出連續(xù)取兩次都是紅球的概率.
(2)ξ的可能取值為1,2,3,4,分別求出P(ξ=1),P(ξ=2),P(ξ=3),P(ξ=4).由此能求出取到黑球的概率.
解答:(1)連續(xù)取兩次都是紅球的概率  P=
4
5
×
4
5
=
16
25
;
(2)ξ的可能取值為1,2,3,4,
P(ξ=1)=
1
5

P(ξ=2)=
4
5
×
1
5
=
4
25
,
P(ξ=3)=(
4
5
)2×
1
5
=
16
125

P(ξ=4)=(
4
5
)3=
64
125

故取到黑球的概率為P=
1
5
+
4
25
+
16
125
+
64
125
=1
點評:本題主要考查了等可能事件的概率,以及對立事件和古典概型的概率等有關知識,是歷年高考的必考題型.解題時要認真審題,注意排列組合和概率知識的靈活運用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

一個袋中裝有大小相同的5個球,現(xiàn)將這5個球分別編號為1,2,3,4,5.
(1)從袋中取出兩個球,每次只取出一個球,并且取出的球不放回.求取出的兩個球上編號之積為奇數(shù)的概率;
(2)若在袋中再放入其他5個相同的球,測量球的彈性,經(jīng)檢測這10個的球的彈性得分如下:8.7,9.1,8.3,9.6,9.4,8.7,9.7,9.3,9.2,8.0,把這10個球的得分看成一個總體,從中任取一個數(shù),求該數(shù)與總體平均數(shù)之差的絕對值不超過0.5的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一個袋中裝有大小相同的球10個,其中紅球8個,黑球2個,現(xiàn)從袋中有放回地取球,每次隨機取1個. 求:
(Ⅰ)連續(xù)取兩次都是紅球的概率;
(Ⅱ)如果取出黑球,則取球終止,否則繼續(xù)取球,直到取出黑球,但取球次數(shù)最多不超過4次,求取球次數(shù)ξ的概率分布列及期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•閘北區(qū)二模)一個袋中裝有大小相同的黑球、白球和紅球共10個.已知從袋中任意摸出1個球,得到黑球的概率是
2
5
;從袋中任意摸出2個球,至少得到1個白球的概率是
7
9
.從袋中任意摸出2個球,記得到白球的個數(shù)為ξ,則隨機變量ξ的數(shù)學期望Eξ=
1
1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•嘉興二模)一個袋中裝有大小相同的黑球和白球共9個,從中任取3個球,記隨機變量X為取出3球中白球的個數(shù),已知P(X=3)=
521

(Ⅰ)求袋中白球的個數(shù);
(Ⅱ)求隨機變量X的分布列及其數(shù)學期望.

查看答案和解析>>

同步練習冊答案