17.若定義域均為D的三個函數(shù)f(x),g(x),h(x)滿足條件:對任意x∈D,點(diǎn)(x,g(x)與點(diǎn)(x,h(x)都關(guān)于點(diǎn)(x,f(x)對稱,則稱h(x)是g(x)關(guān)于f(x)的“對稱函數(shù)”.已知g(x)=$\sqrt{1-{x}^{2}}$,f(x)=2x+b,h(x)是g(x)關(guān)于f(x)的“對稱函數(shù)”,且h(x)≥g(x)恒成立,則實(shí)數(shù)b的取值范圍是[$\sqrt{5}$,+∞).

分析 根據(jù)對稱函數(shù)的定義,結(jié)合h(x)≥g(x)恒成立,轉(zhuǎn)化為點(diǎn)到直線的距離d≥1,利用點(diǎn)到直線的距離公式進(jìn)行求解即可.

解答 解:解:∵x∈D,點(diǎn)(x,g(x)) 與點(diǎn)(x,h(x))都關(guān)于點(diǎn)(x,f(x))對稱,∴g(x)+h(x)=2f(x),∵h(yuǎn)(x)≥g(x)恒成立,
∴2f(x)=g(x)+h(x)≥g(x)+g(x)=2g(x),即f(x)≥g(x)恒成立,
作出g(x)和f(x)的圖象,
若h(x)≥g(x)恒成立,
則h(x)在直線f(x)的上方,
即g(x)在直線f(x)的下方,
則直線f(x)的截距b>0,且原點(diǎn)到直線y=2x+b的距離d≥1,
d=$\frac{|b|}{\sqrt{{2}^{2}+1}}=\frac{|b|}{\sqrt{5}}≥1$⇒b≥$\sqrt{5}$或b$≤-\sqrt{5}$(舍去)
即實(shí)數(shù)b的取值范圍是[$\sqrt{5}$,+∞),

點(diǎn)評 本題主要考查不等式恒成立問題,根據(jù)對稱函數(shù)的定義轉(zhuǎn)化為點(diǎn)到直線的距離關(guān)系,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.綜合性較強(qiáng),有一定的難度.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若函數(shù)$y=|{\begin{array}{l}{cosx}&{sinx}\\{sinx}&{cosx}\end{array}}|$的最小正周期為aπ,則實(shí)數(shù)a的值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.定義f(x)={x}(其中{x}表示不小于x的最小整數(shù))為“取上整函數(shù)”,例如{2.1}=3,{4}=4.以下關(guān)于“取上整函數(shù)”性質(zhì)的描述,正確的是( 。
①f(2x)=2f(x);                         
②若f(x1)=f(x2),則x1-x2<1;
③任意x1,x2∈R,f(x1+x2)≤f(x1)+f(x2);
④$f(x)+f(x+\frac{1}{2})=f(2x)$.
A.①②B.①③C.②③D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知y=g(x)與y=h(x)都是定義在(-∞,0)∪(0,+∞)上的奇函數(shù),且當(dāng)x>0時(shí),$g(x)=\left\{\begin{array}{l}{x^2},\;\;0<x≤1\\ g(x-1),\;\;\;x>1.\end{array}\right.$,h(x)=klog2x(x>0),若y=g(x)-h(x)恰有4個零點(diǎn),則正實(shí)數(shù)k的取值范圍是( 。
A.$[\frac{1}{2},1]$B.$(\frac{1}{2},1]$C.$(\frac{1}{2},{log_3}2]$D.$[\frac{1}{2},{log_3}2]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.在二項(xiàng)式(x+$\frac{6}{x}$)6的展開式中,常數(shù)項(xiàng)是4320.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,F(xiàn)1,F(xiàn)2分別是橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn),且焦距為2$\sqrt{2}$,動弦AB平行于x軸,且|F1A|+|F1B|=4.
(1)求橢圓C的方程;
(2)若點(diǎn)P是橢圓C上異于點(diǎn)$a>\sqrt{5}$、A,B的任意一點(diǎn),且直線PA、PB分別與y軸交于點(diǎn)M、N,若MF2、NF2的斜率分別為k1、k2,求證:k1•k2是定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.按如圖所示的程序框圖運(yùn)算:若輸入x=17,則輸出的x值是143.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知f(x)是定義在R上的偶函數(shù),f(1)=1,且對任意x∈R都有f(x+4)=f(x),則f(99)等于( 。
A.-1B.0C.1D.99

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.從某居民區(qū)隨機(jī)抽取10個家庭,獲得第i個家庭的月收入xi(單位:千元)與月儲蓄yi(單位:千元)的數(shù)據(jù)資料,算得$\sum_{i=1}^{10}{x_i}=80$,$\sum_{i=1}^{10}{y_i}=20$,$\sum_{i=1}^{10}{{x_i}{y_i}}=184$,$\sum_{i=1}^{10}{x_i^2}=720$.
(Ⅰ)求家庭的月儲蓄y對月收入x的線性回歸方程$\hat y=\hat bx+\hat a$;
(Ⅱ)判斷變量x與y之間是正相關(guān)還是負(fù)相關(guān);
(Ⅲ)若該居民區(qū)某家庭月收入為12千元,預(yù)測該家庭的月儲蓄.
附:線性回歸方程$\hat y=\hat bx+\hat a$中,$\hat b=\frac{{\sum_{i=1}^n{{x_i}y{\;}_i^{\;}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$,$\hat a=\overline y-\hat b\overline x$.其中$\overline x$,$\overline y$為樣本平均值,線性回歸方程也可寫為$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$.

查看答案和解析>>

同步練習(xí)冊答案