20.已知sinx=-$\frac{1}{4}$,則cos2x=( 。
A.$\frac{7}{8}$B.-$\frac{7}{8}$C.$\frac{{\sqrt{15}}}{4}$D.-$\frac{{\sqrt{15}}}{4}$

分析 由條件利用二倍角的余弦公式,求得cos2x的值.

解答 解:∵sinx=-$\frac{1}{4}$,則cos2x=1-2sin2x=1-2•$\frac{1}{16}$=$\frac{7}{8}$,
故選:A.

點(diǎn)評(píng) 本題主要考查二倍角的余弦公式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.在平面內(nèi)有n(n∈N*)條直線,其中任何兩條不平行,任何三條不過同一點(diǎn),若這n條直線把平面分成f(n)個(gè)平面區(qū)域,則f(3)=7;f(n)=$\frac{{{n^2}+n+2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.△ABC中,∠BAC=45°,AD⊥BC于D,BD=2,DC=3,則AC邊上中線BE的長(zhǎng)等于$\frac{\sqrt{85}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知$\overrightarrow a$,$\overrightarrow b$是兩個(gè)相互垂直的單位向量,而|$\overrightarrow c$|=13,$\overrightarrow c$•$\overrightarrow a$=3,$\overrightarrow c$•$\overrightarrow b$=4,則對(duì)于任意實(shí)數(shù)t1,t2,則|$\overrightarrow c$-t1$\overrightarrow a-{t_2}$$\overrightarrow b$|的最小值是12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=1+2sinxcosx
(1)求函數(shù)f(x)的最小正周期;
(2)求函數(shù)f(x)在區(qū)間[-$\frac{π}{2}$,$\frac{π}{6}$]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=2sinxcosx+2cos2x-1,求y=f(x)的周期和最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在平面直角坐標(biāo)系xOy中,圓C經(jīng)過A(0,1),B(3,4),C(6,1)三點(diǎn).
(Ⅰ)求圓C的方程;
(Ⅱ)若圓C與直線x-y+a=0交于A,B兩點(diǎn),且OA⊥OB,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.化簡(jiǎn):tan70°sin80°($\sqrt{3}$tan20°-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.如圖所示,求一個(gè)棱長(zhǎng)為$\sqrt{2}$的正四面體的體積,可以看成一個(gè)棱長(zhǎng)為1的正方體切去四個(gè)角后得到,類比這種分法,一個(gè)相對(duì)棱長(zhǎng)都相等的四面體A-BCD,其三組棱長(zhǎng)分別為AB=CD=$\sqrt{5}$,AD=BC=$\sqrt{13}$,AC=BD=$\sqrt{10}$,則此四面體的體積為2.

查看答案和解析>>

同步練習(xí)冊(cè)答案