【題目】如圖,在長方體ABCD﹣A1B1C1D1中,E是CD上一點(diǎn),AB=AD=3,AA1=2,CE=1,P是AA1上一點(diǎn),且DP∥平面AEB1 , F是棱DD1與平面BEP的交點(diǎn),則DF的長為( )
A.1
B.
C.
D.
【答案】B
【解析】解:在長方體ABCD﹣A1B1C1D1的棱AB上取點(diǎn)M,使得BM=1, 過點(diǎn)M作MN∥BB1 , 交AB1于N,連接EM、EN,如圖所示;
則平面EMN∥平面ADD1A1;
∵BB1=2AM=2BM,
∴MN= ,
∴當(dāng)AP=MN= 時(shí),DP∥EN,
即DP∥平面AEB;
∵F是棱DD1與平面BEP的交點(diǎn),
∴EF∥BP;
取DG=AP= ,連接CG,則CG∥BP,
∴EF∥CG,
∴DF= DG= .
故選:B.
【考點(diǎn)精析】通過靈活運(yùn)用棱柱的結(jié)構(gòu)特征,掌握兩底面是對應(yīng)邊平行的全等多邊形;側(cè)面、對角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形即可以解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,φ∈(0, ))的圖象在y軸上的截距為1,在相鄰兩個(gè)最值點(diǎn) 和(x0 , ﹣2)上(x0>0),函數(shù)f(x)分別取最大值和最小值.
(1)求函數(shù)f(x)的解析式;
(2)若f(x)= 在區(qū)間 內(nèi)有兩個(gè)不同的零點(diǎn),求k的取值范圍;
(3)求函數(shù)f(x)在區(qū)間 上的對稱軸方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: (a>b>0 ) 經(jīng)過點(diǎn) P(1, ),離心率 e=
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程.
(Ⅱ)設(shè)過點(diǎn)E(0,﹣2 ) 的直線l 與C相交于P,Q兩點(diǎn),求△OPQ 面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《數(shù)學(xué)九章》中對已知三角形三邊長求三角形的面積的求法填補(bǔ)了我國傳統(tǒng)數(shù)學(xué)的一個(gè)空白,與著名的海倫公式完全等價(jià),由此可以看出我國古代已具有很高的數(shù)學(xué)水平,其求法是:“以小斜冪并大斜冪減中斜冪,余半之,自乘于上.以小斜冪乘大斜冪減上,余四約之,為實(shí).一為從隔,開平方得積.”若把以上這段文字寫成公式,即S= .現(xiàn)有周長為2 + 的△ABC滿足sinA:sinB:sinC=( ﹣1): :( +1),試用以上給出的公式求得△ABC的面積為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知不等式ax2+bx﹣1<0的解集為{x|﹣1<x<2}.
(1)計(jì)算a、b的值;
(2)求解不等式x2﹣ax+b>0的解集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,內(nèi)角A、B、C的對邊分別為a,b,c,且2asinB﹣ bcosA=0.
(1)求cosA;
(2)若a= ,b=2,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x﹣ .
(1)討論f(x)的單調(diào)性.
(2)若f(x)在區(qū)間(1,2)上單調(diào)遞減,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{bn}滿足bn=| |,其中a1=2,an+1= .
(1)求b1 , b2 , b3 , 并猜想bn的表達(dá)式(不必寫出證明過程);
(2)由(1)寫出數(shù)列{bn}的前n項(xiàng)和Sn , 并用數(shù)學(xué)歸納法證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓O1和圓O2的極坐標(biāo)方程分別為ρ=2, .
(1)把圓O1和圓O2的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)求經(jīng)過兩圓交點(diǎn)的直線的極坐標(biāo)方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com