已知兩直線l1:ax-by+4=0,l2:(a-1)x+y+b=0,分別求滿足下列條件的a、b的值.
(1) 直線l1過點(-3,-1),且l1⊥l2;
(2) 直線l1與l2平行,且坐標原點到l1、l2的距離相等.

(1)a=2,b=2(2)

解析

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

已知三條直線l1:2x-y+a =" 0" (a>0),直線l2:-4x+2y+1 = 0和直線l3:x+y-1= 0,且l1與l2的距離是
(1)求a的值;
(2)能否找到一點P,使得P點同時滿足下列三個條 件:
①P是第一象限的點;
②P 點到l1的距離是P點到l2的距離的 ;
③P點到l1的距離與P點到l3的距離之比是.若能,求P點坐標;若不能,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知平行四邊形ABCD的兩條鄰邊AB、AD所在的直線方程為;,它的中心為M,求平行四邊形另外兩條邊CB、CD所在的直線方程及平行四邊形的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知△ABC的頂點為A(3,-1),AB邊上的中線所在的直線方程為6x+10y-59=0,∠B的平分線所在的直線方程為x-4y+10=0,求BC邊所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知△ABC中,A(1,-4),B(6,6),C(-2,0).求:
(1)△ABC中平行于BC邊的中位線所在直線的一般式方程和截距式方程;
(2)BC邊的中線所在直線的一般式方程,并化為截距式方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖所示,直線l過點P(-1,2),且與以A(-2,-3),B(4,0)為端點的線段恒相交,求直線l的斜率范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知直線l:+4-3m=0.
(1)求證:不論m為何實數(shù),直線l恒過一定點M;
(2)過定點M作一條直線l1,使夾在兩坐標軸之間的線段被M點平分,求直線l1的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知直線,(不同時為0),,
(1)若,求實數(shù)的值;
(2)當時,求直線之間的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(理)已知⊙和定點,由⊙外一點向⊙引切線,切點為,且滿足
(1)求實數(shù)間滿足的等量關(guān)系;
(2)求線段長的最小值;
(3)若以為圓心所作的⊙與⊙有公共點,試求半徑取最小值時的⊙方程.

查看答案和解析>>

同步練習冊答案