已知圓C過定點(diǎn)A(0,1),圓心C在拋物線x2=2y上,M、N為圓C與x軸的交點(diǎn).
(1)當(dāng)圓心C是拋物線的頂點(diǎn)時(shí),求拋物線準(zhǔn)線被該圓截得的弦長(zhǎng).
(2)當(dāng)圓心C在拋物線上運(yùn)動(dòng)時(shí),|MN|是否為一定值?請(qǐng)證明你的結(jié)論.
(3)當(dāng)圓心C在拋物線上運(yùn)動(dòng)時(shí),記|AM|=m,|AN|=n,求
m
n
+
n
m
的最大值,并求出此時(shí)圓C的方程.
考點(diǎn):圓與圓錐曲線的綜合
專題:圓錐曲線的定義、性質(zhì)與方程
分析:(1)先求出拋物線的準(zhǔn)線方程,圓的方程,再利用勾股定理求拋物線準(zhǔn)線被該圓截得的弦長(zhǎng);
(2)求出M、N的坐標(biāo),再計(jì)算|MN|,即可得出結(jié)論;
(3)求出m,n,表示出
m
n
+
n
m
,分類討論,利用基本不等式求最大值,從而可得圓C的方程.
解答: 解:(1)拋物線x2=2y的頂點(diǎn)為
0,0
,準(zhǔn)線方程為y=-
1
2
,
∵圓C過定點(diǎn)A
0,1
,圓心C是拋物線的頂點(diǎn),
∴圓的半徑等于1,圓C的方程為x2+y2=1.
∴弦長(zhǎng)2
1-(
1
2
)
2
=2×
3
2
=
3
…(4分)
(2)設(shè)圓心C
a,
1
2
a2
,則圓C的半徑r=
a2+(
1
2
a2-1)
2
,
圓C的方程是為:(x-a)2+(y-
1
2
a2)2=a2+(
1
2
a2-1)2
…(6分)
令y=0,得x2-2ax+a2-1=0,得x1=a-1,x2=a+1,∴|MN|=|x2-x1|=2是定值.…(8分)
(3)由(2)知,不妨設(shè)M
a-1,0
N
a+1,0
m=
x
2
1
+1
=
(a-1)2+1
=
a2+2-2a
,n=
x22+1
=
(a+1)2+1
=
a2+2+2a
m
n
+
n
m
=
m2+n2
mn
=
2a2+4
a4+4
=2
1+
4a2
a4+4
.…(11分)
當(dāng)a=0時(shí),
m
n
+
n
m
=2
.…(12分)
當(dāng)a≠0時(shí),
m
n
+
n
m
=
m2+n2
mn
=
2a2+4
a4+4
=2
1+
4a2
a4+4
=2
1+
4
a2+
4
a2
≤2
2

當(dāng)且僅當(dāng)a=±
2
時(shí),等號(hào)成立…(14分)
所以當(dāng)a=±
2
時(shí),
m
n
+
n
m
取得最大值2
2
,此時(shí)圓C的方程為(x±
2
)2+(y-1)2=2
.…(16分)
點(diǎn)評(píng):本題考查圓的方程,考查直線與圓的位置關(guān)系,考查基本不等式的運(yùn)用,考查學(xué)生的計(jì)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l:x+y-3=0及曲線C:(x-3)2+(y-2)2=2,則點(diǎn)M(2,1)( 。
A、在直線l上,但不在曲線C上
B、在直線l上,也在曲線C上
C、不在直線l上,也不在曲線C上
D、不在直線l上,但在曲線C上

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某醫(yī)院有內(nèi)科醫(yī)生12名,外科醫(yī)生8名,現(xiàn)選派5名參加賑災(zāi)醫(yī)療隊(duì)
(1)某內(nèi)科醫(yī)生甲與某外科醫(yī)生乙必須參加,共有多少種不同選法?
(2)甲、乙均不能參加,有多少種選法?
(3)甲、乙兩人至少有一人參加,有多少種選法?
(4)隊(duì)中至少有一名內(nèi)科醫(yī)生和一名外科醫(yī)生,有幾種選法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二項(xiàng)式(
x
-
1
3x
)5
展開式中的常數(shù)項(xiàng)為p,且函數(shù)f(x)=
1-x2
,-1≤x≤0
3x2-
p
10
,0<x≤1
,則
1
-1
f(x)dx=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)P(x,y)滿足x2+y2-2y=0,則u=
y+1
x
的取值范圍是( 。
A、-
3
≤μ≤
3
B、μ≤-
3
μ≥
3
C、-
3
3
≤μ≤
3
3
D、μ≤-
3
3
μ≥
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在極坐標(biāo)系中,圓C的方程為ρ=2acosθ,以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為
x=3t+2
y=4t+2
(t為參數(shù)),若直線l與圓C相切,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式
x-3
2-x
≥0的解集是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)g(x)=lnx-
1
x
的零點(diǎn)所在區(qū)間是(  )
A、(0,1)
B、(1,2)
C、(2,3)
D、(3,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若集合A={x∈R|y=lg(2-x)},B={y∈R|y=2x-1,x∈A},則∁R(A∩B)=( 。
A、R
B、(-∞,0]∪[2,+∞)
C、[2,+∞)
D、(-∞,0]

查看答案和解析>>

同步練習(xí)冊(cè)答案