【題目】已知函數(shù),.
(l)求的單調(diào)區(qū)間;
(2)若函數(shù)在區(qū)間內(nèi)存在唯一的極值點(diǎn),求的值.
【答案】(1)單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.(2)或.
【解析】試題分析:(1)先求得函數(shù)定義域?yàn)?/span>,再利用函數(shù)的導(dǎo)數(shù)來(lái)求函數(shù)的單調(diào)區(qū)間。(2)即在區(qū)間上存在唯一零點(diǎn),且為奇次零點(diǎn)。所以對(duì)函數(shù)g(x)求導(dǎo) .由(1)可知函數(shù)在上單調(diào)遞增,在上單調(diào)遞減.而,所以g(x)最多兩個(gè)零點(diǎn),分別位于(0,1)和,所以現(xiàn)在只需在(0,1)和中各找一個(gè),,使得,可找<0,,所以一定有兩個(gè)零點(diǎn),因?yàn)橐业膮^(qū)間長(zhǎng)度為1,所以再找,可求得或.
試題解析:(1)由已知得,.
當(dāng)時(shí),由,得,
由,得.
所以函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.
(2)因?yàn)?/span> ,
則 .
由(1)可知,函數(shù)在上單調(diào)遞增,在上單調(diào)遞減.
又因?yàn)?/span>,.
所以在上有且只有一個(gè)零點(diǎn).
又在上,在上單調(diào)遞減;
在上,在上單調(diào)遞增.
所以為極值點(diǎn),此時(shí).
又,,
所以在上有且只有一個(gè)零點(diǎn).
又在上,在上單調(diào)遞增;
在上,在上單調(diào)遞減.
所以為極值點(diǎn),此時(shí).
綜上所述,或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,△ACD是邊長(zhǎng)為1的等邊三角形,△ABC是等腰直角三角形,∠ACB=90°,BD交AC于點(diǎn)E.
(1)求BD2的值;
(2)求線段AE的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某連鎖經(jīng)營(yíng)公司所屬5個(gè)零售店某月的銷售額和利潤(rùn)額資料如下表
商店名稱 | A | B | C | D | E |
銷售額x(千萬(wàn)元) | 3 | 5 | 6 | 7 | 9 |
利潤(rùn)額y(百萬(wàn)元) | 2 | 3 | 3 | 4 | 5 |
(1)畫(huà)出散點(diǎn)圖.觀察散點(diǎn)圖,說(shuō)明兩個(gè)變量有怎樣的相關(guān)性.
(2)用最小二乘法計(jì)算利潤(rùn)額y對(duì)銷售額x的回歸直線方程.
(3)當(dāng)銷售額為4(千萬(wàn)元)時(shí),估計(jì)利潤(rùn)額的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】根據(jù)國(guó)家環(huán)保部新修訂的《環(huán)境空氣質(zhì)量標(biāo)準(zhǔn)》規(guī)定:居民區(qū)PM2.5的年平均濃度不得超過(guò)35微克/立方米,PM2.5的24小時(shí)平均濃度不得超過(guò)75微克/立方米.我市環(huán)保局隨機(jī)抽取了一居民區(qū)2016年20天PM2.5的24小時(shí)平均濃度(單位:微克/立方米)的監(jiān)測(cè)數(shù)據(jù),數(shù)據(jù)統(tǒng)計(jì)如表
組別 | PM2.5濃度 | 頻數(shù)(天) | 頻率 |
第一組 | (0,25] | 3 | 0.15 |
第二組 | (25,50] | 12 | 0.6 |
第三組 | (50,75] | 3 | 0.15 |
第四組 | (75,100] | 2 | 0.1 |
(1)從樣本中PM2.5的24小時(shí)平均濃度超過(guò)50微克/立方米的天數(shù)中,隨機(jī)抽取2天,求恰好有一天PM2.5的24小時(shí)平均濃度超過(guò)75微克/立方米的概率;
(2)將這20天的測(cè)量結(jié)果按上表中分組方法繪制成的樣本頻率分布直方圖如圖. ①求圖中a的值;
②求樣本平均數(shù),并根據(jù)樣本估計(jì)總體的思想,從PM2.5的年平均濃度考慮,判斷該居民區(qū)的環(huán)境質(zhì)量是否需要改善?并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖(1)所示,已知四邊形是由直角△和直角梯形拼接而成的,其中
.且點(diǎn)為線段的中點(diǎn), , 現(xiàn)將△沿進(jìn)行翻折,使得二面角
的大小為,得到圖形如圖(2)所示,連接,點(diǎn)分別在線段上.
(1)證明: ;
(2)若三棱錐的體積為四棱錐體積的,求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)投資1千萬(wàn)元用于一個(gè)高科技項(xiàng)目,每年可獲利25%.由于企業(yè)間競(jìng)爭(zhēng)激烈,每年底需要從利潤(rùn)中取出資金200萬(wàn)元進(jìn)行科研、技術(shù)改造與廣告投入,方能保持原有的利潤(rùn)增長(zhǎng)率.經(jīng)過(guò)多少年后,該項(xiàng)目的資金可以達(dá)到4倍的目標(biāo)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)是空間兩條直線, 是空間兩個(gè)平面,則下列命題中不正確的是( )
A. 當(dāng)時(shí),“”是“”的充要條件
B. 當(dāng)時(shí),“”是“”的充分不必要條件
C. 當(dāng)時(shí),“”是“”的必要不充分條件
D. 當(dāng)時(shí),“”是“”的充分不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了了解初三女生身高情況,某中學(xué)對(duì)初三女生身高情況進(jìn)行了一次測(cè)量,所得數(shù)據(jù)整理后列出了頻率分布表如下:
組 別 | 頻數(shù) | 頻率 |
145.5~149.5 | 1 | 0.02 |
149.5~153.5 | 4 | 0.08 |
153.5~157.5 | 20 | 0.40 |
157.5~161.5 | 15 | 0.30 |
161.5~165.5 | 8 | 0.16 |
165.5~169.5 | m | n |
合 計(jì) | M | N |
(1)求出表中m,n,M,N所表示的數(shù)分別是多少?
(2)畫(huà)出頻率分布直方圖;
(3)全體女生中身高在哪組范圍內(nèi)的人數(shù)最多?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC的三個(gè)頂點(diǎn)A(m,n)、B(2,1)、C(﹣2,3);
(1)求BC邊所在直線的方程;
(2)BC邊上中線AD的方程為2x﹣3y+6=0,且S△ABC=7,求點(diǎn)A的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com