分析 (1)在底面四邊形ABCD內(nèi)過(guò)C作CE⊥AD于E,由已知求得AC=$\sqrt{2}$,CD=$\sqrt{2}$,則AC2+DC2=AD2,得AC⊥CD.再由題意知CC1⊥平面ABCD,從而AC⊥CC1,由線(xiàn)面垂直的判定可得AC⊥平面CDD1C1,進(jìn)一步得到平面CDD1C1⊥平面ACD1;
(2)由三棱錐A1-ACD1與三棱錐C-AA1D1是相同的,利用等積法求出三棱錐C-AA1D1的體積即可.
解答 (1)證明:在底面四邊形ABCD內(nèi)過(guò)C作CE⊥AD于E,
由底面四邊形ABCD是直角梯形,AB⊥AD,AB=BC=1,以及AD=2,可得AC=$\sqrt{2}$,CE=1,
則CD=$\sqrt{2}$,
∴AC2+DC2=AD2,得AC⊥CD.
又由題意知CC1⊥平面ABCD,從而AC⊥CC1,而CC1∩CD=C,∴AC⊥平面CDD1C1,
又AC?平面ACD1,
∴平面CDD1C1⊥平面ACD1;
(2)解:∵三棱錐A1-ACD1與三棱錐C-AA1D1是相同的,
故只需求三棱錐C-AA1D1的體積即可,
而CE⊥AD,且由AA1⊥平面ABCD,可得CE⊥AA1,
又∵AD∩AA1=A,∴有CE⊥平面ADD1A1,即CE為三棱錐C-AA1D1的高.
故${V_{{A_1}-AC{D_1}}}={V_{C-A{A_1}{D_1}}}=\frac{1}{3}×\frac{1}{2}•A{A_1}•{A_1}{D_1}•CE=\frac{1}{3}×\frac{1}{2}×\sqrt{2}×2×1=\frac{{\sqrt{2}}}{3}$.
點(diǎn)評(píng) 本題考查面面垂直的判定和性質(zhì),考查空間想象能力和思維能力,訓(xùn)練了利用等積法求多面體的體積,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ∅ | B. | t≥28或t≤1 | C. | t>28或t<1 | D. | 1≤t≤28 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 必要不充分條件 | B. | 充分不必要條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
2x-$\frac{π}{3}$ | -$\frac{4π}{3}$ | -π | -$\frac{π}{2}$ | 0 | $\frac{π}{2}$ | $\frac{2π}{3}$ |
x | -$\frac{π}{2}$ | -$\frac{π}{3}$ | -$\frac{π}{12}$ | $\frac{π}{6}$ | $\frac{5π}{12}$ | $\frac{π}{2}$ |
f(x) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -$\frac{1}{2}$$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow$+$\overrightarrow{c}$ | B. | $\frac{1}{2}$$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow$+$\overrightarrow{c}$ | C. | -$\frac{1}{2}$$\overrightarrow{a}$-$\frac{1}{2}$$\overrightarrow$+$\overrightarrow{c}$ | D. | $\frac{1}{2}$$\overrightarrow{a}$-$\frac{1}{2}$$\overrightarrow$+$\overrightarrow{c}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 1或2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com