已知函數(shù)f(x)=logax,(a>0且a≠1).
(1)若g(x)=f(|x|),當(dāng)a>1時(shí),解不等式g(1)<g(lgx);
(2)若函數(shù)h(x)=|f(x-a)|-1,討論h(x)在區(qū)間[2,4]上的最小值.
分析:(1)g(x)=loga|x|是偶函數(shù),當(dāng)x>0時(shí),g(x)=logax (a>1)是增函數(shù),當(dāng)x<0時(shí),g(x)=loga(-x)(a>1)是減函數(shù),不等式g(1)<g(lgx),等價(jià)于g(1)<g(|lgx|),利用單調(diào)性,即可求得不等式的解集;
(2)h(x)=|f(x-a)|-1=|loga(x-a)|-1,根據(jù)x-a>0,x∈[2,4],可得0<a<4且a≠1,由于x=a+1時(shí),loga(x-a)=0,故需要分類(lèi)討論,從而確定h(x)在區(qū)間[2,4]上的最小值.
解答:解:(1)g(x)=loga|x|是偶函數(shù)                         
當(dāng)x>0時(shí),g(x)=logax (a>1)是增函數(shù),當(dāng)x<0時(shí),g(x)=loga(-x)(a>1)是減函數(shù),
∵g(1)<g(lgx),∴g(1)<g(|lgx|),
∴1<|lgx|,
∴l(xiāng)gx<-1或lgx>1
∴0<x<0.1或x>10;
∴不等式的解集為:{x|0<x<0.1或x>10}
(2)h(x)=|f(x-a)|-1=|loga(x-a)|-1
∵x-a>0,x∈[2,4],∴0<a<4且a≠1
若x=a+1時(shí),loga(x-a)=0
①當(dāng)2<a+1≤4,則1<a≤3,∴x=a+1時(shí),h(x)min=h(a+1)=-1.              
②當(dāng)a+1<2,則0<a<1,在x∈[2,4]時(shí),h(x)為增函數(shù),
∴x=2時(shí),h(x)min=h(2)=-loga(2-a)-1.          
③當(dāng)a+1>4,則3<a<4,在x∈[2,4]時(shí),h(x)為減函數(shù).
∴x=4時(shí),h(x)min=h(4)=-loga(4-a)-1.           
∴h(x)min=
-loga(2-a)-1,0<a<1
-1,1<a≤3
-loga(4-a)-1,3<a<4
點(diǎn)評(píng):本題是函數(shù)的單調(diào)性與奇偶性的綜合,考查解不等式,考查利用單調(diào)性求函數(shù)的最值,考查分類(lèi)討論的數(shù)學(xué)思想.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2x-2+ae-x(a∈R)
(1)若曲線y=f(x)在點(diǎn)(1,f(1))處的切線平行于x軸,求a的值;
(2)當(dāng)a=1時(shí),若直線l:y=kx-2與曲線y=f(x)在(-∞,0)上有公共點(diǎn),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2+2|lnx-1|.
(1)求函數(shù)y=f(x)的最小值;
(2)證明:對(duì)任意x∈[1,+∞),lnx≥
2(x-1)
x+1
恒成立;
(3)對(duì)于函數(shù)f(x)圖象上的不同兩點(diǎn)A(x1,y1),B(x2,y2)(x1<x2),如果在函數(shù)f(x)圖象上存在點(diǎn)M(x0,y0)(其中x0∈(x1,x2))使得點(diǎn)M處的切線l∥AB,則稱直線AB存在“伴侶切線”.特別地,當(dāng)x0=
x1+x2
2
時(shí),又稱直線AB存在“中值伴侶切線”.試問(wèn):當(dāng)x≥e時(shí),對(duì)于函數(shù)f(x)圖象上不同兩點(diǎn)A、B,直線AB是否存在“中值伴侶切線”?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2-bx的圖象在點(diǎn)A(1,f(1))處的切線l與直線x+3y-1=0垂直,若數(shù)列{
1
f(n)
}的前n項(xiàng)和為Sn,則S2012的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=xlnx
(Ⅰ)求函數(shù)f(x)的極值點(diǎn);
(Ⅱ)若直線l過(guò)點(diǎn)(0,-1),并且與曲線y=f(x)相切,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
3
x
a
+
3
(a-1)
x
,a≠0且a≠1.
(1)試就實(shí)數(shù)a的不同取值,寫(xiě)出該函數(shù)的單調(diào)增區(qū)間;
(2)已知當(dāng)x>0時(shí),函數(shù)在(0,
6
)上單調(diào)遞減,在(
6
,+∞)上單調(diào)遞增,求a的值并寫(xiě)出函數(shù)的解析式;
(3)記(2)中的函數(shù)圖象為曲線C,試問(wèn)是否存在經(jīng)過(guò)原點(diǎn)的直線l,使得l為曲線C的對(duì)稱軸?若存在,求出直線l的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案