二項(xiàng)式(
x
+
1
3x
)n
的展開式的各項(xiàng)系數(shù)和大于32小于128,則展開式中系數(shù)最大的項(xiàng)是
 
考點(diǎn):二項(xiàng)式系數(shù)的性質(zhì)
專題:二項(xiàng)式定理
分析:由條件求得n=6,根據(jù)展開式的通項(xiàng)公式可得展開式中系數(shù)最大的項(xiàng).
解答: 解:由題意可得二項(xiàng)式(
x
+
1
3x
)n
的展開式的各項(xiàng)系數(shù)和為2n,由32<2n<128,求得n=6,
故展開式的通項(xiàng)公式為 Tr+1=
C
r
6
x3-
5r
6
,故當(dāng)r=3時(shí),展開式的系數(shù)最大,故展開式中系數(shù)最大的項(xiàng)是T4=20x
1
2
,
故答案為:20x
1
2
點(diǎn)評:本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)式系數(shù)的性質(zhì),二項(xiàng)式展開式的通項(xiàng)公式,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(1,5),
b
=(-3,2),則向量
a
b
方向上的投影為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求和:1-2+3-4+5-6+…+(2n-1)-2n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是周期為4的偶函數(shù),當(dāng)x∈[0,2]時(shí),f(x)=-x+1,則不等式x•f(x)>0在x∈(-3,1)上的解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個(gè)命題:
①若直線a∥平面α,直線b⊥α,則a⊥b;
②若直線a∥平面α,α⊥平面β,則a⊥β;
③若a、b是二條平行直線,b?平面α,則a∥α;
④若平面α⊥平面β,平面γ⊥β,則α∥γ.
其中不正確的命題的個(gè)數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)值域:
(1)y=3x+
4
x
;    
(2)y=3x-
4
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若(1+x)n=1+a1x+a2x2+a3x3+…+xn(n∈N*),且a1:a3=1:2,則n=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若f(x)和g(x)都是定義在R上的函數(shù),且均存在反函數(shù),則函數(shù)f[g(x)]的反函數(shù)為(  )
A、f-1[g-1(x)]
B、f-1[g(x)]
C、g-1[f-1(x)]
D、g-1[f(x)]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=
2(a-1)x2+bx+(a-1)-1
的定義域?yàn)镽,則b-3a的取值范圍是( 。
A、[-3,+∞)
B、(-∞,-3)
C、(-∞,3]
D、[3,+∞)

查看答案和解析>>

同步練習(xí)冊答案