已知圓 C方程為.
(1)若圓C與直線相交于M、N兩點,且OM⊥ON(O為坐標原點),求m;
(2)在(1)的條件下,求以MN為直徑的圓的方程.

(1)m=.(2)x2+y2-x-y=0.

解析

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

如圖,已知圓,圓

(1)若過點的直線被圓截得的弦長為,求直線的方程;
(2)設動圓同時平分圓、圓的周長.
①求證:動圓圓心在一條定直線上運動;
②動圓是否過定點?若過,求出定點的坐標;若不過,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
已知圓C的方程為x2+y2=4.
(1)求過點P(1,2)且與圓C相切的直線l的方程;
(2)直線l過點P(1,2),且與圓C交于A、B兩點,若|AB|=2,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知圓和直線
(1) 求證:不論取什么值,直線和圓總相交;
(2) 求取何值時,圓被直線截得的弦最短,并求最短弦的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知直線,圓
(1)判斷直線和圓的位置關系;
(2)若直線和圓相交,求相交弦長最小時的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
求過直線和圓的交點,且滿足下列條件之一的圓的方程.   (1)過原點;       (2)有最小面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分13分)已知圓經(jīng)過、兩點,且圓心在直線上.
(Ⅰ)求圓的方程;
(Ⅱ)若直線經(jīng)過點且與圓相切,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
在一個直徑是50的球形器材中,嵌入一根圓軸(如圖5-5),為了使圓軸不易脫出,應該使它與球有最大的接觸面積,問圓軸的半徑x應是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(12分)已知圓的圓心在軸的正半軸上,且圓與圓 相外切,又和直線相切,求圓的方程。

查看答案和解析>>

同步練習冊答案